Classical theorems for a Gould type integral

ALINA GAVRILUŢ Faculty of Mathematics University "Al.I. Cuza" Iaşi Romania gavrilut@uaic.ro ANCA CROITORU Faculty of Mathematics University "Al.I. Cuza" Iaşi, Romania croitoru@uaic.ro

Abstract: In this paper, we continue the study of the Gould type integral introduced in [30] which generalizes the results of [12, 13, 17, 28] and [29]. We obtain various classical properties, such as a mean type theorem, a Lebesgue (Fatou respectively) type theorem, Hölder and Minkowski inequalities etc. Other results concerning measurability, semi-convexity, diffusion and atoms are also established.

Key–Words: (multi)(sub)measure, semi-convex, Darboux property, diffused, atom, totally-measurable, Gould integral, Lebesgue theorem, Fatou lemma.

1 Introduction

In [20] G. G. Gould introduced an integral for bounded real functions with respect to finitely additive set functions taking values in a Banach space, integral which is more general that the Lebesgue one.

In the last years, the non-additive case and the set-valued case received a special attention because of their applications in mathematical economics, decision theory, artificial intelligence, statistics or theory of games.

A. Precupanu and A. Croitoru generalized Gould's results [20], studying in [28] a Gould type integral for multimeasures with values in $\mathcal{P}_{kc}(X)$, the family of all compact convex nonempty subsets of a real Banach space X. Also, Gould type integrals with respect to a (multi)submeasure were studied in [12]–[19]. In [30], A. Precupanu, A. Gavriluţ and A. Croitoru introduced and studied a Gould type integral for bounded real functions with respect to a set multifunction of finite variation with values in $\mathcal{P}_{bf}(X)$, the family of all bounded closed nonempty subsets of a real Banach space X.

On the other hand, notions as atoms, pseudoatoms, Darboux property, non-atomicity (with different nonequivalent variants - see, for instance, [8, 9]), (finitely) purely atomicity, semi-convexity, diffusion were intensively studied in recent years, due to their applications in many classical measure theory problems, physics and convex analysis (see [1, 3, 4, 5, 6, 8, 9, 10, 11, 21, 23, 24, 25, 26]).

That is why, in this paper, we study these notions for the Gould type integral introduced in [30]. We prove that the Lebesgue theorem, Hölder and Minkowski inequalities, Fatou lemma have here a correspondent and our integral preserves properties like semi-convexity or diffusion. Results regarding measurability are also established.

2 Basic notions

Let $(X, \|\cdot\|)$ be a real normed space, $\mathcal{P}_0(X)$ the family of all nonvoid subsets of X, $\mathcal{P}_b(X)$ the family of all nonvoid bounded subsets of X, $\mathcal{P}_f(X)$ the family of all nonvoid closed subsets of X, $\mathcal{P}_{bf}(X)$ the family of all nonvoid closed bounded subsets of X, $\mathcal{P}_{bfc}(X)$ the family of all nonvoid closed bounded convex subsets of X, $\mathcal{P}_{kc}(X)$ the family of all nonvoid compact convex subsets of X and h the Hausdorff pseudometric on $\mathcal{P}_f(X)$, which becomes a metric on $\mathcal{P}_{bf}(X)$.

It is known that $h(M, N) = \max\{e(M, N), e(N, M)\}$, where $e(M, N) = \sup_{x \in M} d(x, N)$, for every $M, N \in \mathcal{P}_f(X)$ is the excess of M every N and d(x, N) is the distance from $x \in N$.

of M over N and d(x, N) is the distance from x to N with respect to the distance induced by the norm of X.

We denote
$$|M| = h(M, \{0\}) = \sup_{x \in M} ||x||$$
, for

every $M \in \mathcal{P}_0(X)$, where 0 is the origin of X.

For every $M, N \in \mathcal{P}_0(X)$ and every $\alpha \in \mathbb{R}$, let $M + N = \{x + y | x \in M, y \in N\}$ and $\alpha M = \{\alpha x | x \in M\}$. We denote by \overline{M} the closure of M with respect to the topology induced by the norm of X.

On $\mathcal{P}_0(X)$ we consider the Minkowski addition "+" [18], defined by:

$$M + N = \overline{M + N}$$
, for every $M, N \in \mathcal{P}_0(X)$.

Let T be an abstract nonvoid set, $\mathcal{P}(T)$ the family of all subsets of T and C a ring of subsets of T.

By $i = \overline{1, n}$ we mean $i \in \{1, 2, ..., n\}$, for $n \in \mathbb{N}^*$, where \mathbb{N} is the set of all naturals and $\mathbb{N}^* = \mathbb{N} \setminus \{0\}$. We also denote $\mathbb{R}_+ = [0, +\infty)$ and $\overline{\mathbb{R}}_+ = [0, +\infty]$.

Some properties of h are presented in the following proposition (see Hu and Papageorgiu [22], Petruşel and Moţ [27]).

Proposition 1 Let $A, B, C, D, A_n, B_n \in \mathcal{P}_0(X)$, for every $n \in \mathbb{N}^*$. Then:

I) $(\alpha + \beta)A = \alpha A + \beta A$, for every $\alpha, \beta \in \mathbb{R}_+$ and convex A.

II) (A + B) + C = A + (B + C). III) (A + B) + (C + D) = (A + C) + (B + D). $IV) h(A, B) = h(\overline{A}, \overline{B}).$ $V) e(A, B) = 0 \text{ if and only if } A \subseteq \overline{B}.$ $VI) h(A, B) = 0 \text{ if and only if } \overline{A} = \overline{B}.$ $VII) h(A, B) = 0 \text{ if and only if } \overline{A} = \overline{B}.$ $VII) h(\alpha A, \alpha B) = |\alpha| h(A, B), \text{ for all } \alpha \in \mathbb{R}.$ $VIII) h(\sum_{i=1}^{n} A_i, \sum_{i=1}^{n} B_i) \leq \sum_{i=1}^{n} h(A_i, B_i).$ $IX) h(\alpha A, \beta A) \leq |\alpha - \beta| \cdot |A|, \text{ for all } \alpha, \beta \in \mathbb{R}.$ $X) h(\alpha A + \beta B, \gamma A + \delta B) \leq |\alpha - \gamma| \cdot |A| + |\beta - \delta| \cdot |B|, \text{ for all } \alpha, \beta, \gamma, \delta \in \mathbb{R}.$ $YII) h(A + C, B + C) = h(A, B) \text{ for every } A, B \in \mathbb{R}.$

XI) h(A+C, B+C) = h(A, B), for every $A, B \in \mathcal{P}_{bfc}(X)$ and $C \in \mathcal{P}_b(X)$.

XII) If $A, A_n \in \mathcal{P}_b(X)$ and $\alpha, \alpha_n \in \mathbb{R}$, for every $n \in \mathbb{N}^*$, are so that $h(A_n, A) \to 0$ and $\alpha_n \to \alpha$, then $h(\alpha_n A_n, \alpha A) \to 0$.

We now recall some classical notions:

Definition 2 A set function $m : C \to \overline{\mathbb{R}}_+$, with $m(\emptyset) = 0$, is said to be:

I) monotone if $m(A) \leq m(B)$, for every $A, B \in C$, with $A \subseteq B$.

II) superadditive if $m(\bigcup_{i \in I} A_i) \ge \sum_{i \in I} m(A_i)$, for every sequence of pairwise disjoint sets $(A_i)_{i \in I} \subset C$, with $|A_i \subset C$, $I \subset \mathbb{N}$

with $\bigcup_{i \in I} A_i \in \mathcal{C}, I \subseteq \mathbb{N}.$

III) subadditive if $m(A \cup B) \leq m(A) + m(B)$, for every $A, B \in C$, with $A \cap B = \emptyset$.

IV) a submeasure (in Drewnowski's sense [7]) if m is monotone and subadditive.

Example 3 I) If $\nu : \mathcal{C} \to \mathbb{R}_+$ is a finitely additive set function, then $m : \mathcal{C} \to [0, 1]$ defined for every $A \in \mathcal{C}$ by $m(A) = \frac{\nu(A)}{1 + \nu(A)}$ is a submeasure.

II) ([8,9]) Let $m_n : \mathcal{C} \to \mathbb{R}_+$ be a submeasure for every $n \in \mathbb{N}$. Then the set function $m : \mathcal{C} \to \overline{\mathbb{R}}_+$ defined by $m(A) = \sup_n m_n(A)$, for every $A \in \mathcal{C}$, is a submeasure, too. **Remark 4** Suppose $m : C \to \mathbb{R}_+$ is a submeasure of finite variation. If \overline{m} denotes the variation of m on $\mathcal{P}(T)$, then:

I) \overline{m} is finitely additive on C.

II) The following statements are equivalent:
i) m is o-continuous;
ii) m is σ-subadditive;
iii) m is σ-additive on C;
iv) m is o-continuous on C.

Definition 5 For a set multifunction $\mu : C \to \mathcal{P}_0(X)$, with $\mu(\emptyset) = \{0\}$, we consider:

I) the extended real valued set function $|\mu|$ *defined by* $|\mu|(A) = |\mu(A)|$ *, for every* $A \in C$ *.*

II) the variation $\overline{\mu}$ of μ defined by $\overline{\mu}(A) = \sup\{\sum_{i=1}^{n} |\mu(A_i)|\}$, for every $A \in \mathcal{P}(T)$, where the supremum is extended over all finite families of pairwise disjoint sets $\{A_i\}_{i=\overline{1,n}} \subset A$, with $A_i \subseteq A$, for every $i \in \{1, \ldots, n\}$.

 μ is said to be of finite variation on C if $\overline{\mu}(A) < \infty$, for every $A \in C$.

Definition 6 Let $\mu : C \to \mathcal{P}_0(X)$ be a set multifunction, with $\mu(\emptyset) = \{0\}$. μ is said to be

I) monotone if $\mu(A) \subseteq \mu(B)$, for every $A, B \in C$, with $A \subseteq B$.

II) a multimeasure if $\mu(A \cup B) = \mu(A) + \mu(B)$, for every $A, B \in C$, with $A \cap B = \emptyset$.

III) a multisubmeasure if μ is monotone and

 $\mu(A \cup B) \subseteq \mu(A) + \mu(B), \text{ for every } A, B \in \mathcal{C},$ with $A \cap B = \emptyset$

(or, equivalently, for every $A, B \in C$).

IV)
$$h$$
- σ -subadditive if $|\mu(\bigcup_{n=1}^{\infty} A_n)| \leq$

 $\sum_{n=1}^{\infty} |\mu(A_n)|$, for every sequence of pairwise dis-

joint sets $(A_n)_{n \in \mathbb{N}^*} \subset \mathcal{C}$, with $\bigcup_{n=1}^{\infty} A_n \in \mathcal{C}$.

V) null-additive if $\mu(A \cup B) = \mu(A)$, for every $A, B \in \mathcal{C}$, with $\mu(B) = \{0\}$.

VI) null–null-additive if $\mu(A \cup B) = \{0\}$, for every $A, B \in C$, with $\mu(A) = \mu(B) = \{0\}$.

VII) order-continuous (shortly, o-continuous) if $\lim_{n\to\infty} h(\mu(A_n),\mu(A)) = 0, \text{ for every decreasing se-}$ quence of sets $(A_n)_{n\in\mathbb{N}^*} \subset \mathcal{C}$, with $\bigcap_{n=1}^{\infty} A_n = \emptyset$ (de-

noted by $A_n \searrow \emptyset$).

VIII) increasing convergent if

 $\lim_{n\to\infty}h(\mu(A_n),\mu(\bar{A})) = 0, \text{ for every increasing se-}$

quence of sets $(A_n)_{n \in \mathbb{N}^*} \subset C$, with $\bigcup_{n=1}^{\infty} A_n = A \in C$ (denoted by $A_n \nearrow A$).

Remark 7 If μ is $\mathcal{P}_f(X)$ -valued, then in Definition 6-II), III) it usually appears the Minkowski addition instead of the classical addition because the sum of two closed sets is not, generally, a closed set.

Remark 8 . I) $\overline{\mu}$ is monotone and superadditive on $\mathcal{P}(T)$. Also (see [12]), if $\mu : \mathcal{C} \to \mathcal{P}_f(X)$ is a multi(sub)measure, then $\overline{\mu}$ is finitely additive on \mathcal{C} and $|\mu|$ is a submeasure.

II) Every monotone multimeasure is, particularly, a multisubmeasure. Also, any multisubmeasure is null-additive. Any null-additive set multifunction is null-null-additive. The converses are not valid.

III) Let $\mu : \mathcal{A} \to \mathcal{P}_f(X)$ be a multisubmeasure of finite variation. The following statements are equivalent:

i) μ is h-σ-subadditive; *ii*) μ is order-continuous; *iii*) μ is σ-additive on C.

3 Semi-convexity, Darboux property, diffusion and atoms of set multifunctions

We present some properties regarding semi-convexity, Darboux property, diffusion and atoms for set multifunctions. These properties will be discussed in section 5 in relation with the Gould type set-valued integral.

The following notions are classical in measure theory, but they are extended to the set valued case (see for instance [2, 3, 4, 15, 16]).

Definition 9 Let $\mu : \mathcal{C} \to \mathcal{P}_0(X)$ be a set multifunction, with $\mu(\emptyset) = \{0\}$.

I) We say that μ

i) is semi-convex if for every $A \in C$, with $\mu(A) \supseteq \{0\}$, there is a set $B \in C$ such that $B \subseteq A$ and $\mu(B) = \frac{1}{2} \mu(A)$.

ii) has the Darboux property if for every $A \in C$, with $\mu(A) \supseteq \{0\}$ and every $p \in (0, 1)$, there exists a set $B \in C$ such that $B \subseteq A$ and $\mu(B) = p \mu(A)$.

iii) is diffused if for every $t \in T$, with $\{t\} \in C$, we have $\mu(\{t\}) = \{0\}$.

II) A set $A \in C$ is said to be an atom of μ if $\mu(A) \supseteq \{0\}$ and for every $B \in C$, with $B \subseteq A$, we have $\mu(B) = \{0\}$ or $\mu(A \setminus B) = \{0\}$.

III) We say that μ is

i) finitely purely atomic if there is a finite disjoint family $(A_i)_{i=\overline{1,n}} \subset C$ of atoms of μ so that $T = \bigcup_{i=1}^{n} A_i$.

ii) purely atomic if there is at most a countable number of atoms $(A_n)_n \subset C$ of μ so that $\mu(T \setminus \bigcup_{n=1}^{\infty} A_n) = \{0\}$ (evidently, here C must be a σ -algebra). *iii)* non-atomic if it has no atoms.

IV) We say that $\mu : C \to \mathcal{P}_{kc}(\mathbb{R})$ is induced by a set function $m : C \to \mathbb{R}_+$, with $m(\emptyset) = 0$, if $\mu(A) = [0, m(A)]$, for every $A \in C$.

Remark 10 I) The Lebesgue measure μ is diffused. Also, the set functions $m_1, m_2 : \mathcal{C} \to \mathbb{R}_+$ defined for every $A \in \mathcal{C}$ by $m_1(A) = \sqrt{\mu(A)}$ and $m_2(A) = \frac{\mu(A)}{1+\mu(A)}$ are diffused submeasures. The same are the multisubmeasures induced by them.

II) If $\mu_1, \mu_2 : \mathcal{C} \to \mathcal{P}_0(X)$ are diffused multimeasures, then the same is the multimeasure $\mu_1 + \mu_2$ defined by $(\mu_1 + \mu_2)(A) = \mu_1(A) + \mu_2(A)$, for every $A \in \mathcal{C}$.

III) Let $\mu : \mathcal{C} \to \mathcal{P}_0(X)$ be a set multifunction, with $\mu(\emptyset) = \{0\}$. Then the following statements are equivalent:

a) μ is diffused;
b) |μ| is diffused;
c) μ is diffused on C.

The following result is obviously true.

Proposition 11 If the set multifunction $\mu : C \to \mathcal{P}_0(X)$, with $\mu(\emptyset) = \{0\}$, has the Darboux property, then it is semi-convex.

Under some assumptions, the converse of Proposition 11 is also valid, as shown below:

Theorem 12 Let C be a σ -ring and $\mu : C \rightarrow \mathcal{P}_{bfc}(X)$ a monotone increasing convergent multimeasure. Then μ has the Darboux property if and only if μ is semi-convex.

Proof. The "only if" part results from Proposition 11. The "if" part. Every $p \in (0,1)$ has an expansion $p = \sum_{n=1}^{\infty} \frac{a_n}{2^n}$, where $a_n \in \{0,1\}$, for every $n \in \mathbb{N}^*$. Let $A \in \mathcal{C}$, so that $\mu(A) \supseteq \{0\}$ and let $p \in (0,1)$.

By the semi-convexity of μ , there is $B_1 \in \mathcal{C}$ so that $B_1 \subseteq A$ and $\mu(B_1) = \frac{a_1}{2}\mu(A)$.

Analogously, there is $B_2 \in \mathcal{C}$ so that $B_2 \subseteq A \setminus B_1$ and $\mu(B_2) = \frac{a_2}{2^2}\mu(A)$ and so on. Consider $B = \bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} (\bigcup_{k=1}^n B_k) \in \mathcal{C}$. We have

 $\mu(B) = \lim_{n \to \infty} \sum_{k=1}^{n} \mu(B_k) = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{a_k}{2^k} \mu(A) \text{ (with}$

respect to h). By Proposition 1-I and XII, it follows $\mu(B) = p\mu(A)$, as claimed.

Remark 13 *I*) If μ is monotone, then μ is non-atomic if and only if for every $A \in C$, with $\mu(A) \supseteq \{0\}$, there exists $B \in C$, with $B \subseteq A$, $\mu(B) \supseteq \{0\}$ and $\mu(A \setminus B) \supseteq \{0\}$).

II) Let $\nu : \mathcal{C} \to \mathbb{R}_+$ be a set function, with $\nu(\emptyset) = 0$ and μ the set multifunction induced by ν . Then μ has the Darboux property if and only if ν has it.

III) [15] Suppose T is a locally compact Hausdorff space, \mathcal{B} is the Borel δ -ring generated by the compact subsets of T and $\mu : \mathcal{B} \to \mathcal{P}_f(X)$ is a multisubmeasure. Then μ is non-atomic if and only if it is diffused.

4 $\tilde{\mu}$ -totally-measurability

In this section we present some properties of $\tilde{\mu}$ totally-measurable functions. In the sequel, \mathcal{A} is an algebra of subsets of T, $\mu : \mathcal{A} \to \mathcal{P}_f(X)$ is a set multifunction so that $\mu(\emptyset) = \{0\}$ and $f : T \to \mathbb{R}$ an arbitrary function.

Definition 14 *I*) A partition of a set $A \in A$ is a finite family $P = \{A_i\}_{i=\overline{1,n}}$ of pairwise disjoint sets of A such that $\bigcup_{i=1}^{n} A_i = A$.

We denote by \mathcal{P} the class of all partitions of T and if $A \in \mathcal{A}$ is fixed, by \mathcal{P}_A , the class of all partitions of A.

II) For a set multifunction $\mu : \mathcal{A} \to \mathcal{P}_0(X)$, we consider the extended real valued set function $\tilde{\mu}$ defined by $\tilde{\mu}(A) = \inf{\{\overline{\mu}(B); A \subseteq B, B \in \mathcal{A}\}}$, for every $A \in \mathcal{P}(T)$.

Remark 15 I) $\tilde{\mu}(A) = \overline{\mu}(A)$, for every $A \in A$, $\tilde{\mu}$ is monotone and if $\overline{\mu}$ is subadditive, then $\tilde{\mu}$ is also subadditive.

II) Suppose $\mu : \mathcal{A} \to \mathcal{P}_f(X)$ is a multisubmeasure of finite variation. Then:

i) $\tilde{\mu}$ is a submeasure.

ii) If, moreover, μ is h- σ -subadditive, then $\tilde{\mu}$ is σ -subadditive.

Definition 16 *I*) *f* is said to be $\tilde{\mu}$ -totally-measurable on (T, \mathcal{A}, μ) if for every $\varepsilon > 0$ there exists a partition $P_{\varepsilon} = \{A_i\}_{i=\overline{0,n}}$ of *T* such that:

$$(*) \ \left\{ \begin{array}{l} a) \ \widetilde{\mu}(A_0) < \varepsilon \ \text{and} \\ b) \ \sup_{\substack{t,s \in A_i \\ for \ every \ i = \overline{1,n}.}} |f(t) - f(s)| = osc(f,A_i) < \varepsilon, \end{array} \right.$$

II) f is said to be $\tilde{\mu}$ -totally-measurable on $B \in \mathcal{A}$ if the restriction $f|_B$ of f to B is $\tilde{\mu}$ -totally measurable on $(B, \mathcal{A}_B, \mu_B)$, where $\mathcal{A}_B = \{A \cap B; A \in \mathcal{A}\}$ and $\mu_B = \mu|_{\mathcal{A}_B}$.

One can easily observe that if f is $\tilde{\mu}$ -totallymeasurable on T, then f is $\tilde{\mu}$ -totally-measurable on every $A \in \mathcal{A}$.

Definition 17 We say that a property (P) holds μ almost everywhere (shortly, μ -ae) if there is $A \in \mathcal{P}(T)$, with $\tilde{\mu}(A) = 0$, so that the property (P) is valid on $T \setminus A$.

Definition 18 Let $f_n : T \to \mathbb{R}$ be a real function for every $n \in \mathbb{N}$. One says that the sequence (f_n)

I) converges in submeasure to f (denoted by $f_n \xrightarrow{\widetilde{\mu}} f$) if for every $\delta > 0$, $\lim_{n \to \infty} \widetilde{\mu}(B_n(\delta)) = 0$, where

 $B_n(\delta) = \{t \in T; |f_n(t) - f(t)| \ge \delta\}.$

II) converges almost everywhere to f (denoted by

 $f_n \xrightarrow{a.e.} f$ if there is $A \in \mathcal{P}(T)$ so that $\tilde{\mu}(A) = 0$ and (f_n) pointwise converges to f on $T \setminus A$.

III) (Li [23, 24]) is almost uniformly convergent on T (with respect to $\tilde{\mu}$), denoted by $f_n \xrightarrow{au} f$, if there exists $(A_k)_{k \in \mathbb{N}^*} \subset A$, with $\lim_{k \to \infty} \tilde{\mu}(A_k) = 0$, such that f_n converges to f on $T \setminus A_k$ uniformly for any fixed $k \in \mathbb{N}^*$.

From now on, μ is supposed to be of finite variation.

Theorem 19 Let $\mu : \mathcal{A} \to \mathcal{P}_f(X)$ be a multisubmeasure.

I) ([11]) If $f, g : T \to \mathbb{R}$ are bounded $\tilde{\mu}$ -totallymeasurable functions, then:

i) f + g is $\tilde{\mu}$ -totally-measurable;

ii) λf *is* $\tilde{\mu}$ -*totally-measurable, for every* $\lambda \in \mathbb{R}$ *;*

iii) f^2 and fg are $\tilde{\mu}$ -totally-measurable;

iv) $|f|^p$ *is* $\tilde{\mu}$ *-totally-measurable, for every* $p \in [1, +\infty)$ *;*

v) If $\inf_{t \in T} f(t) > 0$, then $\frac{1}{f}$ is $\tilde{\mu}$ -totallymeasurable.

II) Suppose $f, g : T \to \mathbb{R}$ are bounded functions. If $|f|^p$ and $|g|^p$ are $\tilde{\mu}$ -totally-measurable for an arbitrary $p \in [1, +\infty)$, then $|f + g|^p$ is $\tilde{\mu}$ -totallymeasurable.

III) ([13]) If for every $n \in \mathbb{N}$, $f_n : T \to \mathbb{R}$ is bounded $\tilde{\mu}$ -totally-measurable and (f_n) is convergent in submeasure to a bounded function $f : T \to \mathbb{R}$, then f is $\tilde{\mu}$ -totally-measurable. **Remark 20** If $\varphi : \mathbb{R} \to \mathbb{R}$ is Lipschitz, then $\varphi \circ f$ is $\tilde{\mu}$ -totally-measurable.

Proposition 21 Let $\mu : \mathcal{A} \to \mathcal{P}_f(X)$ be a (multi)(sub)measure, $f : T \to \mathbb{R}$ a bounded function and $A, B \in \mathcal{A}$, with $A \cap B = \emptyset$. Then f is $\tilde{\mu}$ -totallymeasurable on $A \cup B$ if and only if it is $\tilde{\mu}$ -totallymeasurable on A and $\tilde{\mu}$ -totally-measurable on B.

Proof. The *if part* is straightforward. For the *on-ly if part*, by the $\tilde{\mu}$ -totally-measurability of f on A and B, there are $P_{\varepsilon}^{A} = \{A_i\}_{i=\overline{0,n}} \in \mathcal{P}_A$ and $P_{\varepsilon}^{B} = \{B_j\}_{i=\overline{0,q}} \in \mathcal{P}_B$ satisfying the condition (*). Since $\overline{\mu}$ is additive on A, then $P_{\varepsilon}^{A \cup B} = \{A_0 \cup B_0, A_1, \dots, A_n, B_1, \dots, B_q\} \in \mathcal{P}_{A \cup B}$ also satisfies condition (*), so f is $\tilde{\mu}$ -totally-measurable on $A \cup B$.

Remark 22 *I*) In the above proposition, A and B need not to be disjoint. Indeed, if we take arbitrary $A, B \in A$, since $A \cup B = (A \setminus B) \cup B$ and $\tilde{\mu}$ -totally-measurability is hereditary, the statement follows.

II) Under the assumptions of the above proposition, if $\{A_i\}_{i=\overline{1,p}} \subset A$, then f is $\tilde{\mu}$ -totally-measurable on $\bigcup_{i=1}^{p} A_i$ if and only if the same is f on every A_i , $i = \frac{1}{1,p}$.

Proposition 23 If \mathcal{A} is a σ -algebra, $\mu : \mathcal{A} \to \mathcal{P}_f(X)$ is an o-continuous (multi)(sub)measure, $f : T \to \mathbb{R}$ is a bounded function and $(A_n)_n \subset \mathcal{A}$ are pairwise disjoint, then f is $\tilde{\mu}$ -totally-measurable on every $A_n, n \in \mathbb{N}$ if and only if the same is f on $A = \bigcup_{n=1}^{\infty} A_n$.

Proof. The *only if part* immediately follows. The *if part*: Since μ is an o-continuous (multi)(sub)measure of finite variation, then $\overline{\mu}$ is additive on \mathcal{A} , so $\overline{\mu}$ is also o-continuous on \mathcal{A} . We observe that $A \setminus \bigcup_{k=1}^{n} A_k \searrow \emptyset$, so for every $\varepsilon > 0$, there is $n_0 \in \mathbb{N}$, with $\overline{\mu}(A \setminus \bigcup_{k=1}^{n_0} A_k) < \varepsilon$.

Since for every $l = \overline{1, n_0}$, f is $\tilde{\mu}$ totally-measurable on A_l , let $\{B_j^1\}_{j=\overline{0,p_1}}$, $\{B_j^2\}_{j=\overline{0,p_2}}, ..., \{B_j^{p_{n_0}}\}_{j=\overline{0,p_{n_0}}}$ be the corresponding partitions satisfying (*).

The partition $P_{\varepsilon}^{A} = \{(A \setminus \bigcup_{k=1}^{n_{0}} A_{k}), \{B_{j}^{1}\}_{j=\overline{1,p_{1}}}, \{B_{j}^{2}\}_{j=\overline{1,p_{2}}}, \dots, \{B_{j}^{p_{n_{0}}}\}_{j=\overline{1,p_{n_{0}}}}\} \in \mathcal{P}_{A} \text{ satisfies } (*),$ so f is $\widetilde{\mu}$ -totally-measurable on $A = \bigcup_{n=1}^{\infty} A_{n}$. \Box

Theorem 24 Suppose \mathcal{A} is a σ -algebra, $\mu : \mathcal{A} \to \mathbb{R}_+$ is an o-continuous submeasure of finite variation

and $(f_n)_{n \in \mathbb{N}^*}$ is a sequence of uniformly bounded $\tilde{\mu}$ totally-measurable functions $f_n : T \to \mathbb{R}$. Then gdefined for every $t \in T$ by $g(t) = \inf_{n \in \mathbb{N}^*} f_n(t)$, is $\tilde{\mu}$ totally-measurable.

Proof. One can easily check that for every $t, s \in T$, the following inequality holds:

(1)
$$|g(t) - g(s)| \le \sup_{n \in \mathbb{N}^*} |f_n(t) - f_n(s)|.$$

Since for every $n \in \mathbb{N}^*$, f_n is $\tilde{\mu}$ -totallymeasurable, then for every $\varepsilon > 0$, there is a partition $P_{\varepsilon}^n = \{A_j^n\}_{j=\overline{0,p_n}} \in \mathcal{P}$ so that $\overline{\mu}(A_0^n) < \frac{\varepsilon}{2^{n+1}}$ and (2)

$$\sup_{t,s\in A_j^n} |f_n(t) - f_n(s)| < \frac{\varepsilon}{2^{n+1}}, \text{ for every } j = \overline{1, p_n}.$$

Let $A_0 = \bigcup_{n=1}^{\infty} A_0^n \in \mathcal{A}$. Because μ is an ocontinuous submeasure of finite variation, then, by Remark 4-II, $\overline{\mu}$ is σ -additive on \mathcal{A} , so,

$$\overline{\mu}(A_0) \leq \sum_{n=1}^{\infty} \overline{\mu}(A_0^n) < \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} < \frac{\varepsilon}{2}.$$

On the other hand,

$$cA_{0} = \bigcap_{n=1}^{\infty} cA_{0}^{n} = \bigcap_{n=1}^{\infty} (A_{1}^{n} \cup A_{2}^{n} \cup ... \cup A_{p_{n}}^{n}) =$$

= $(A_{1}^{1} \cup A_{2}^{1} \cup ... \cup A_{p_{1}}^{1}) \cap (A_{1}^{2} \cup A_{2}^{2} \cup ... \cup A_{p_{2}}^{2}) \cap ...$
= $\bigcup_{(i_{n}) \in \prod_{n=1}^{\infty} I_{n}} (A_{i_{1}}^{1} \cap A_{i_{2}}^{2} \cap ... \cap A_{i_{n}}^{n} \cap ...),$

where $I_n = \{1, 2, ..., p_n\}$, for every $n \in \mathbb{N}^*$. Denote the last reunion by $\bigcup_{n=1}^{\infty} B_n$. Now let $C_n = \bigcup_{k=1}^n B_k$ and $D_n = cA_0 \setminus C_n$, for every $n \in \mathbb{N}^*$. We observe that $B_n \cap B_m = \emptyset$ whenever $n \neq m$, $\bigcup_{n=1}^{\infty} C_n = \bigcup_{n=1}^{\infty} B_n = cA_0$ and $D_n \searrow \emptyset$.

Since $\overline{\mu}$ is o-continuous, there is $n_0(\varepsilon) = n_0 \in \mathbb{N}^*$ such that $\overline{\mu}(cA_0 \setminus (\bigcup_{i=1}^{n_0} B_i)) < \frac{\varepsilon}{2}$. Because $\overline{\mu}(A_0) < \frac{\varepsilon}{2}$, we get $\overline{\mu}(c(\bigcup_{i=1}^{n_0} B_i)) < \varepsilon$. From (1) and (2), we have:

$$\sup_{\substack{t,s\in B_i \\ \forall i\in\{1,\ldots,n_0\}.}} |g(t) - g(s)| \le \sup_{\substack{t,s\in B_i \\ n\in\mathbb{N}^*}} \{\sup_{n\in\mathbb{N}^*} |f_n(t) - f_n(s)| \} < \frac{\varepsilon}{2},$$

If we now consider the partition $P_{\varepsilon} = \{c(\bigcup_{i=1}^{n_0} B_i), B_1, \dots, B_{n_0}\}$, we obtain that g is $\widetilde{\mu}$ -totally-measurable.

Corollary 25 Under the assumptions of Theorem 24, the function h defined for every $t \in T$ by $h(t) = \sup_{n \in \mathbb{N}^*} f_n(t)$, is $\tilde{\mu}$ -totally-measurable. Moreover, supposing there exists $\lim_{n \to \infty} f_n(t) = f(t)$, for every $t \in \mathbb{N}^*$

T, then f is $\tilde{\mu}$ -totally-measurable.

Theorem 26 Suppose (T, ρ) is a compact metric space, B is the Borel δ -ring generated by the compact subsets of $T, f : T \to \mathbb{R}$ is continuous on T and $\mu : \mathcal{B} \to \mathcal{P}_f(X)$ is a finitely purely atomic multisubmeasure. Then f is $\tilde{\mu}$ -totally-measurable on T.

Proof. According to Remark 22, it is sufficient to establish the $\tilde{\mu}$ -totally-measurability of f on an arbitrary, fixed atom A_0 of μ . Since μ is a multisubmeasure, by [15], there is an unique $a_0 \in A_0$ so that $\mu(A_0 \setminus \{a_0\}) = \{0\}$.

Let $\varepsilon > 0$. Since f is continuous in a_0 , there is $\delta_{\varepsilon} > 0$ so that for every $t \in A_0$, with $\rho(t, a_0) < \delta_{\varepsilon}$, we have $|f(t) - f(a_0)| < \frac{\varepsilon}{3}$.

Let $B_{\varepsilon} = \{t \in A_0; \rho(t, a_0) < \delta_{\varepsilon}\} = A_0 \cap B(a_0, \delta_{\varepsilon})$, where $B(a_0, \delta_{\varepsilon})$ is the open ball of center a_0 and radius δ_{ε} . It results $B_{\varepsilon} \in \mathcal{B}$ and since A_0 is an atom, we have $\mu(B_{\varepsilon}) = \{0\}$ or $\mu(A_0 \setminus B_{\varepsilon}) = \{0\}$.

If $\mu(B_{\varepsilon}) = \{0\}$, then since $a_0 \in B_{\varepsilon}$, we get $\mu(\{a_0\}) = \{0\}$. But $\mu(A_0 \setminus \{a_0\}) = \{0\}$, so $\mu(A_0) = \{0\}$, a contradiction. So, we have $\mu(A_0 \setminus B_{\varepsilon}) = \{0\}$. Now, one can easily observe that the partition $P_{A_0} = \{A_0 \setminus B_{\varepsilon}, B_{\varepsilon}\}$ assures the $\tilde{\mu}$ -totally-measurability of f.

5 Semi-convexity, diffusion, atoms and purely atomicity for a Gould type set-valued integral

In this section, we establish results concerning semiconvexity, diffusion, atoms and purely atomicity for the Gould type set-valued integral introduced and studied in [30].

In what follows, without any special assumptions, we suppose \mathcal{A} is an algebra of subsets of T, X is a Banach space, $\mu : \mathcal{A} \to \mathcal{P}_f(X)$ is a set multifunction of finite variation, with $\mu(\emptyset) = \{0\}$ and $f : T \to \mathbb{R}$ is a bounded function. We now recall the following notions and results (see [12, 13, 28, 29]).

Remark 27 If $\mu : \mathcal{A} \to \mathcal{P}_f(X)$ is of finite variation, then μ takes its values in $\mathcal{P}_{bf}(X)$.

Definition 28 I) Let $P = \{A_i\}_{i=\overline{1,n}}$ and $P' = \{B_j\}_{j=\overline{1,m}}$ be two partitions of T. P' is said to be finer than P, denoted $P \leq P'$ (or $P' \geq P$) if for every $j = \overline{1, m}$, there exists $i_j = \overline{1, n}$ so that $B_j \subseteq A_{i_j}$.

II) The common refinement of two partitions $P = \{A_i\}_{i=\overline{1,n}}$ and $P' = \{B_j\}_{j=\overline{1,m}}$ is the partition $P \land P' = \{A_i \cap B_j\}_{\substack{i=\overline{1,n} \\ i=\overline{1,m}}}$.

Definition 29 ([30]) For every partition $P = \{A_i\}_{i=\overline{1,n}}$ of T and every $t_i \in A_i$, $i = \overline{1,n}$, let $\sigma_{f,\mu}(P)$ (or, if there is no doubt, $\sigma_f(P), \sigma_\mu(P), \sigma(P)$) be:

$$\sigma(P) = \sum_{i=1}^{n} f(t_i)\mu(A_i)$$
$$= \overline{f(t_1)\mu(A_1) + \ldots + f(t_n)\mu(A_n)}$$

I) f is said to be μ -integrable on (T, \mathcal{A}, μ) if the net $(\sigma(P))_{P \in (\mathcal{P}, \leq)}$ is convergent in $(\mathcal{P}_f(X), h)$, where \mathcal{P} is ordered by the relation " \leq " given in Definition 4.2.

If $(\sigma(P))_{P \in (\mathcal{P}, \leq)}$ is convergent, then its limit is called the integral of f on T with respect to μ , denoted by $\int_T f d\mu$.

II) For an arbitrary $B \in A$, f is said to be μ integrable on B if the restriction $f|_B$ of f to B is μ integrable on (B, A_B, μ_B) .

Remark 30 *I*) *f* is μ -integrable on *T* if and only if there exists a set $I \in \mathcal{P}_{bf}(X)$ such that for every $\varepsilon > 0$, there exists a partition P_{ε} of *T*, so that for every other partition of *T*, $P = \{A_i\}_{i=\overline{1,n}}$, with $P \ge P_{\varepsilon}$ and every choice of points $t_i \in A_i, i = \overline{1,n}$, we have $h(\sigma(P), I) < \varepsilon$.

II) If μ is a multimeasure (multisubmeasure, submeasure, monotone set multifunction, respectively), we obtain the corresponding definitions of [28, 12, 17, 29], respectively).

III) If μ is a multimeasure and f = 1, then $\int_T f d\mu = \mu(T)$.

IV) If
$$\mu : \mathcal{A} \to \mathcal{P}_{kc}(X)$$
, then $\int_T f d\mu \in \mathcal{P}_{kc}(X)$.

V) Suppose $m : \mathcal{A} \to \mathbb{R}_+$ is an arbitrary set function of finite variation with $m(\emptyset) = 0$ and consider the set multifunction $\mu : \mathcal{A} \to \mathcal{P}_f(\mathbb{R})$ defined by $\mu(A) = \{m(A)\}$, for every $A \in \mathcal{A}$. Then, by I), f is m-integrable on T if and only if there is $I \in \mathbb{R}$ such that for every $\varepsilon > 0$, there exists a partition P_{ε} of T, so that for every other partition of T, $P = \{A_i\}_{i=\overline{1,n}}$, with $P \ge P_{\varepsilon}$ and every choice of points $t_i \in A_i, i =$

$$\overline{1,n}$$
, we have $|\sigma(P)-I| = |\sum_{i=1}^{n} f(t_i)m(A_i)-I| < \varepsilon$.

Here, $I = \int_T f dm$.

Moreover, if m *is finitely additive and* f = 1*, then* $\int_T f dm = m(T)$.

VI) Our integral, if it exists, is unique and has the following properties: homogeneity and additivity with

respect to the function f and the set multifunction μ , additivity with respect to the set, monotonicity with respect to the function f, to the set multifunction μ , and to the set (see [28]–[30] for details. The assumption of monotonicity is not necessary in [29], as observed in [30]).

VII) Let $m : \mathcal{A} \to [0,1]$ be a submeasure of finite variation. One can easily check that the set function $m_1 : \mathcal{A} \to [0,1]$ defined for every $A \in \mathcal{A}$ by $m_1(A) = \sin m(A)$ is also a submeasure of finite variation (since $\overline{m_1}(A) \leq \overline{m}(A)$, for every $A \subseteq T$). Suppose $f : T \to \mathbb{R}$ is bounded. Since, according to [17], m-integrability of f is equivalent to its \widetilde{m} totally-measurability and because $\frac{2}{\pi}t \leq \sin t \leq t$, for every $t \in [0, \frac{\pi}{2})$, then f is m-integrable if and only if f is m_1 -integrable.

Theorem 31 I) Let $f : T \to \mathbb{R}$ be a μ -integrable function. Then

$$\left|\int_{T} f d\mu\right| \leq \sup_{t \in T} |f(t)| \cdot \overline{\mu}(T).$$

II) Let $f : T \to \mathbb{R}$ and $A, B \in \mathcal{A}$, with $A \cap B = \emptyset$. If f is μ -integrable on A and μ -integrable on B, then f is μ -integrable on $A \cup B$ and $\int_{A \cup B} f d\mu = \int_A f d\mu + \int_B f d\mu$.

III) Suppose $\mu : \mathcal{A} \to \mathcal{P}_{kc}(X)$. If $f : T \to \mathbb{R}$ is μ -integrable on T, then f is μ -integrable on every $B \in \mathcal{A}$.

IV) If $f : T \to \mathbb{R}$ is μ -integrable on every $A \in \mathcal{A}$, then the set multifunction $M : \mathcal{A} \to \mathcal{P}_f(X)$, defined by

$$(**) \ M(A) = \int_A f d\mu, \text{for every } A \in \mathcal{A},$$

is a monotone multimeasure, $M \ll \mu$ and M is strongly absolutely continuous with respect to μ .

V) If $f, g: T \to \mathbb{R}$ are bounded functions so that f is μ -integrable on T and $f = g \mu$ -a.e, then g is μ -integrable on T and $\int_T f d\mu = \int_T g d\mu$.

Remark 32 By Theorem 31-I and Remark 10-III), we immediately get that if $\mu : \mathcal{A} \to \mathcal{P}_{kc}(X)$ is diffused, then the same is M defined in (**). Also, by Remark 30-I, if $\inf_{t\in T} f(t) > 0$, then the converse is also valid. So, in this case, μ is diffused if and only if the same is M.

Proposition 33 Let $m_1, m_2 : \mathcal{A} \to \mathbb{R}_+$ be set functions of finite variation, so that $m_1 \leq m_2$ and $m_1(\emptyset) = m_2(\emptyset) = 0, f : T \to \mathbb{R}$ and $\mu :$ $\mathcal{A} \to \mathcal{P}_{kc}(\mathbb{R})$ the set multifunction defined by $\mu(A) =$ $[m_1(A), m_2(A)]$, for every $A \in A$. Then f is μ integrable on T if and only if f is m_1 -integrable on T and m_2 -integrable on T and, in this case,

$$\int_T f d\mu = \left[\int_T f dm_1, \int_T f dm_2\right]$$

Proof. f is m_1 -integrable on T and m_2 -integrable on T if and only if for every $\varepsilon > 0$, there exists a partition P_{ε} of T so that for every other partitions of T, $P' = \{A_i\}_{i=\overline{1,n}}, P'' = \{B_j\}_{j=\overline{1,p}}$, so that $P' \ge P_{\varepsilon}, P'' \ge P_{\varepsilon}$ and every $t_i \in A_i, i = \overline{1,n}, s_j \in B_j, j = \overline{1,p}$, we have

$$\left|\sum_{i=1}^{n} f(t_i) m_k(A_i) - \sum_{j=1}^{p} f(s_j) m_k(B_j)\right| < \varepsilon, \ k = 1, 2.$$

Since

$$h\left(\sum_{i=1}^{n} f(t_{i})\mu(A_{i}), \sum_{j=1}^{p} f(s_{j})\mu(B_{j})\right) =$$

$$= h\left(\left[\sum_{i=1}^{n} f(t_{i})m_{1}(A_{i}), \sum_{i=1}^{n} f(t_{i})m_{2}(A_{i})\right], \left[\sum_{j=1}^{p} f(s_{j})m_{1}(B_{j}), \sum_{j=1}^{p} f(s_{j})m_{2}(B_{j})\right]\right)$$

$$= \max\left\{\left|\sum_{i=1}^{n} f(t_{i})m_{1}(A_{i}) - \sum_{j=1}^{p} f(s_{j})m_{1}(B_{j})\right|, \left|\sum_{i=1}^{n} f(t_{i})m_{2}(A_{i}) - \sum_{j=1}^{p} f(s_{j})m_{2}(B_{j})\right|\right\},$$

it follows that for every $\varepsilon > 0$, there exists a partition P_{ε} of T so that for every other partitions of T, $P' = \{A_i\}_{i=\overline{1,n}}, P'' = \{B_j\}_{j=\overline{1,p}}$, so that $P' \ge P_{\varepsilon}, P'' \ge P_{\varepsilon}$ and every $t_i \in A_i, i = \overline{1,n}, s_j \in B_j, j = \overline{1,p}$, we have

$$h(\sum_{i=1}^n f(t_i)\mu(A_i), \sum_{j=1}^p f(s_j)\mu(B_j)) < \varepsilon,$$

which means that f is μ -integrable on T.

Now, let us prove that $\int_T f d\mu = [\int_T f dm_1, \int_T f dm_2].$

Since f is μ -integrable on T, m_1 -integrable on T and m_2 -integrable on T, it results that for every $\varepsilon > 0$, there exists a partition $\{C_k\}_{k=\overline{1,l}}$ of T so that for every $s_k \in C_k, k = \overline{1, l}$, we have

$$\begin{split} h(\int_T f d\mu, \sum_{k=1}^l f(s_k) \mu(C_k)) &< \frac{\varepsilon}{2} \text{ and} \\ \Big| \int_T f dm_i - \sum_{k=1}^l f(s_k) m_i(C_k) \Big| &< \frac{\varepsilon}{2}, i = 1, 2. \end{split}$$

Then

$$\begin{split} h(\int_{T} f d\mu, \left[\int_{T} f dm_{1}, \int_{T} f dm_{2}\right]) &\leq \\ &\leq h(\int_{T} f d\mu, \sum_{k=1}^{l} f(s_{k})\mu(C_{k})) \\ &+ h(\sum_{k=1}^{l} f(s_{k})\mu(C_{k}), \left[\int_{T} f dm_{1}, \int_{T} f dm_{2}\right]) = \\ &= h(\int_{T} f d\mu, \sum_{k=1}^{l} f(s_{k})\mu(C_{k})) \\ &+ \max\left\{ \left|\int_{T} f dm_{1} - \sum_{k=1}^{l} f(s_{k})m_{1}(C_{k})\right|, \\ &\left|\int_{T} f dm_{2} - \sum_{k=1}^{l} f(s_{k})m_{2}(C_{k})\right|\right\} < \varepsilon, \end{split}$$

for every $\varepsilon > 0$ and this implies $\int_T f d\mu = [\int_T f dm_1, \int_T f dm_2]$. Taking $m_1 = 0$ in Proposition 33, we obtain the

Corollary 34 Let $m : \mathcal{A} \to \mathbb{R}_+$ be a set function of finite variation with $m(\emptyset) = 0, \mu : \mathcal{C} \to \mathcal{P}_{kc}(\mathbb{R})$ the set multifunction defined by $\mu(A) = [0, m(A)]$, for every $A \in \mathcal{C}$ and $f : T \to \mathbb{R}$. Then f is μ -integrable on T if and only if f is m-integrable on T and, in this case,

$$\int_T f d\mu = [0, \int_T f dm].$$

Theorem 35 Let $\mu : \mathcal{A} \to \mathcal{P}_{kc}(X)$ be a semi-convex multimeasure and $f : T \to \mathbb{R}$ a $\tilde{\mu}$ -totally-measurable bounded function on T. Then M defined in (**) is also semi-convex.

Proof. The following statements, even they are established for T, remain valid for any arbitrary set $A \in \mathcal{A}$. Also, according to [28], f is μ -integrable on T and on every $A \in \mathcal{A}$. Consider arbitrary $\varepsilon > 0$ and let $M = \max{\{\overline{\mu}(T), \sup_{t \in T} |f(t)|\}}.$

By the μ -integrability of f on T, there is a partition $\{A_i\}_{i=\overline{1,n}}$ of T such that for every $s_i \in A_i$, $i = \overline{1, n}$, we have $h(\int_T f d\mu, \sum_{i=1}^n f(s_i)\mu(A_i)) < \frac{2\varepsilon}{3}$, so $h(\frac{1}{2}\int_T f d\mu, \sum_{i=1}^n f(s_i)\frac{1}{2}\mu(A_i)) < \frac{\varepsilon}{3}$. Because μ is semi-convex, for every $i = \overline{1, n}$, there is $B_i \subset A_i$ so that

Because μ is semi-convex, for every $i = \overline{1, n}$, there is $B_i \subset A_i$ so that $B_i \in \mathcal{A}$ and $\mu(B_i) = \frac{1}{2}\mu(A_i)$, which implies $h(\frac{1}{2}\int_T f d\mu, \sum_{i=1}^n f(s_i)\mu(B_i)) < \frac{\varepsilon}{3}$.

Since f is μ -integrable on $B = \bigcup_{i=1}^{n} B_i$, there exists a partition $\widetilde{P}_{\varepsilon}^B = \{D_k\}_{k=\overline{1,s}} \in \mathcal{P}_B$ so that for every partition $P \in \mathcal{P}_B$, with $P \ge \widetilde{P}_{\varepsilon}^B$, we have $h(\int_B f d\mu, \sigma(P)) < \frac{\varepsilon}{3}$. On the other hand, because f is $\widetilde{\mu}$ -totally-

measurable on B, there is a partition $\widetilde{P}_{\varepsilon}^{B} = \{E_l\}_{l=\overline{0,m}} \in \mathcal{P}_B$ such that $\overline{\mu}(E_0) < \frac{\varepsilon}{12M}$ and $\sup_{t,s\in E_l} |f(t) - f(s)| < \frac{\varepsilon}{6M}$, for every $l = \overline{1,m}$.

Consider $\{D_k \cap E_l\}_{k=\overline{1,s}, \ l=\overline{0,m}} \in \mathcal{P}_B$ and denote it by $\{C_j\}_{j=\overline{1,q}}$. For instance, $C_1 = D_1 \cap E_0, C_2 = D_2 \cap E_0, ..., C_s = D_s \cap E_0, C_{s+1} = D_1 \cap E_1$ etc. We observe that

$$\begin{split} \overline{\mu} (\bigcup_{j=1}^{s} C_j) &= \overline{\mu}(E_0) < \frac{\varepsilon}{12M} \text{ and} \\ \sup_{t_j, s_j \in C_j} |f(t_j) - f(s_j)| < \frac{\varepsilon}{6M}, \text{ for every } j = \overline{s+1, q}. \end{split}$$

Let $P_{\varepsilon}^{B} = \{B_{i} \cap C_{j}\}_{i=\overline{1,n}, j=\overline{1,q}} \in \mathcal{P}_{B}$. Since $P_{\varepsilon}^{B} \geq \widetilde{P}_{\varepsilon}^{B}$, then $h(\int_{B} f d\mu, \sigma(P_{\varepsilon}^{B})) < \frac{\varepsilon}{3}$. Now, we have:

$$\begin{split} h(\frac{1}{2}\int_{T}fd\mu,\int_{B}fd\mu) &\leq h(\frac{1}{2}\int_{T}fd\mu,\sum_{i=1}^{n}f(s_{i})\mu(B_{i})) \\ &+ h(\int_{B}fd\mu,\sigma(P_{\varepsilon}^{B})) + \\ &+ h(\sigma(P_{\varepsilon}^{B}),\sum_{i=1}^{n}f(s_{i})\mu(B_{i})) < \frac{2\varepsilon}{3} \\ &+ h(\sigma(P_{\varepsilon}^{B}),\sum_{i=1}^{n}f(s_{i})\mu(B_{i})). \end{split}$$

It only remains to prove that for every $\theta_{ij} \in B_i \cap C_j$, $i = \overline{1, n}, j = \overline{1, q}$,

$$h(\sigma(P_{\varepsilon}^{B}), \sum_{i=1}^{n} f(s_{i})\mu(B_{i}))$$

= $h(\sum_{i=1}^{n} \sum_{j=1}^{q} f(\theta_{ij})\mu(B_{i} \cap C_{j}), \sum_{i=1}^{n} f(s_{i})\mu(B_{i})) < \frac{\varepsilon}{3}$

following result.

Indeed, we have:

$$\begin{split} h(\sum_{i=1}^{n}\sum_{j=1}^{q}f(\theta_{ij})\mu(B_{i}\cap C_{j}),\sum_{i=1}^{n}f(s_{i})\mu(B_{i})) &= \\ &= h(\sum_{i=1}^{n}\sum_{j=1}^{q}f(\theta_{ij})\mu(B_{i}\cap C_{j}),\\ &\sum_{i=1}^{n}\sum_{j=1}^{q}f(s_{i})\mu(B_{i}\cap C_{j})) \leq \\ &\leq \sum_{i=1}^{n}\sum_{j=1}^{q}|f(s_{i}) - f(\theta_{ij})| \cdot |\mu(B_{i}\cap C_{j})| = \\ &= \sum_{i=1}^{n}\sum_{j=1}^{s}|f(s_{i}) - f(\theta_{ij})| \cdot |\mu(B_{i}\cap C_{j})| + \\ &+ \sum_{i=1}^{n}\sum_{j=s+1}^{q}|f(s_{i}) - f(\theta_{ij})| \cdot |\mu(B_{i}\cap C_{j})| \leq \\ &\leq 2M\sum_{j=1}^{s}\overline{\mu}(C_{j}) + \sum_{j=s+1}^{q}|f(s_{i}) - f(\theta_{ij})| \cdot \overline{\mu}(C_{j}) < \\ &< 2M\overline{\mu}(\bigcup_{j=1}^{s}C_{j}) + \frac{\varepsilon}{6M}\overline{\mu}(\bigcup_{j=s+1}^{q}C_{j}) \\ &< 2M\frac{\varepsilon}{12M} + \frac{\varepsilon}{6M}M = \frac{\varepsilon}{3}. \end{split}$$

Consequently, $h(\frac{1}{2}\int_T fd\mu, \int_B fd\mu) < \varepsilon$, for every $\varepsilon > 0$, so $\frac{1}{2}\int_T fd\mu = \int_B fd\mu$. Therefore, M is semi-convex.

Theorem 36 Suppose $\mu : \mathcal{A} \to \mathcal{P}_f(X)$ is monotone, null-additive and finitely purely atomic. If f is $\tilde{\mu}$ totally-measurable on T, then f is μ -integrable on T.

Proof. According to Theorem 31-II, it will be sufficient to prove that f is μ -integrable on every atom A of μ . First, we observe that, if A is an atom of μ and if $\{A_i\}_{i=\overline{1,n}} \in \mathcal{P}_A$, then, there exists only one set, for instance, without any loss of generality, A_1 , so that $\mu(A_1) \supseteq \{0\}$ and $\mu(A_2) = \ldots = \mu(A_n) = \{0\}$.

Let $A \in \mathcal{A}$ be an atom of μ .

Since f is $\tilde{\mu}$ -totally-measurable on A, then for every $\varepsilon > 0$ there exists a partition $P_{\varepsilon} = \{A_i\}_{i=\overline{0,n}}$ of A such that:

$$(*) \begin{cases} i) \ \widetilde{\mu}(A_0) < \frac{\varepsilon}{2M} \ (\text{where } M = \sup_{t \in T} |f(t)|) \text{ and} \\ ii) \sup_{t,s \in A_i} |f(t) - f(s)| < \frac{\varepsilon}{\overline{\mu}(T)}, \text{ for every } i = \overline{1, n}. \end{cases}$$

Let $\{B_j\}_{j=\overline{1,k}}, \{C_p\}_{p=\overline{1,s}} \in \mathcal{P}_A$ be two arbitrary partitions which are finer than P_{ε} and consider $s_j \in B_j, j = \overline{1,k}, \theta_p \in C_p, p = \overline{1,s}.$

We prove that

$$h(\sum_{j=1}^{k} f(s_j)\mu(B_j), \sum_{p=1}^{s} f(\theta_p)\mu(C_p)) < \varepsilon.$$

We have two cases:

I. $\mu(A_0) \supseteq \{0\}$. Then $\mu(A_1) = ... = \mu(A_n) = \{0\}$.

Suppose, without any loss of generality that $\mu(B_1) \supseteq \{0\}, \ \mu(C_1) \supseteq \{0\}$ and $\mu(B_2) = \dots = \mu(B_k) = \{0\}, \ \mu(C_2) = \dots = \mu(C_s) = \{0\}$. Then $B_1 \subset A_0$ and $C_1 \subset A_0$. Consequently,

$$h(\sum_{j=1}^{k} f(s_j)\mu(B_j), \sum_{p=1}^{s} f(\theta_p)\mu(C_p)) = h(f(s_1)\mu(B_1), f(\theta_1)\mu(C_1)) \le \le |f(s_1)||\mu(B_1)| + |f(\theta_1)||\mu(C_1)| \le \le 2M\overline{\mu}(A_0) < \varepsilon.$$

II. $\mu(A_0) = \{0\}$. Then, without any loss of generality, $\mu(A_1) \supseteq \{0\}$ and $\mu(A_i) = \{0\}$, for every $i = \overline{2, n}$. Suppose that $\mu(B_1) \supseteq \{0\}, \mu(C_1) \supseteq \{0\}$ and $\mu(B_2) = \ldots = \mu(B_k) = \{0\}, \mu(C_2) = \ldots = \mu(C_s) = \{0\}$. Then $B_1 \subset A_1$ and $C_1 \subset A_1$, and, therefore,

$$h(\sum_{j=1}^{k} f(s_j)\mu(B_j), \sum_{p=1}^{s} f(\theta_p)\mu(C_p)) = h(f(s_1)\mu(B_1), f(\theta_1)\mu(C_1)).$$

Since A is an atom of μ and $\mu(B_1) \supseteq \{0\}$, then $\mu(A \setminus B_1) = \{0\}$, so $\mu(C_1 \setminus B_1) = \{0\}$. By the null-additivity of μ , we get $\mu(C_1) = \mu(B_1)$. Then

$$h(\sum_{j=1}^{k} f(s_j)\mu(B_j), \sum_{p=1}^{s} f(\theta_p)\mu(C_p))$$

= $h(f(s_1)\mu(B_1), f(\theta_1)\mu(C_1))$
= $h(f(s_1)\mu(B_1), f(\theta_1)\mu(B_1)).$

By Proposition 1, we have

$$h(\sum_{j=1}^{k} f(s_j)\mu(B_j), \sum_{p=1}^{s} f(\theta_p)\mu(C_p))$$

$$\leq |\mu(B_1)||f(s_1) - f(\theta_1)| \leq \overline{\mu}(T)\frac{\varepsilon}{\overline{\mu}(T)} = \varepsilon.$$

Therefore, the net $(\sigma(P))_{P \in \mathcal{P}_A}$ is a Cauchy one in the complete metric space $(\mathcal{P}_{bf}(X), h)$, hence f is μ -integrable on A.

In [8, 9], submeasures of the following type are studied. Here, we investigate the relationship between their Gould integrals.

Theorem 37 Let $(m_n)_{n \in \mathbb{N}}$ be an uniformly bounded sequence of submeasures of finite variation, $m_n : \mathcal{A} \to \mathbb{R}_+$, $\forall n \in \mathbb{N}$ and $m : \mathcal{A} \to \mathbb{R}_+$ defined by $m(A) = \sup m_n(A)$, for every $A \in \mathcal{A}$.

Suppose $A_0 \in \mathcal{A}$ is an atom of m and $f: T \to \mathbb{R}$ is \tilde{m} -totally-measurable on T. Then $\int_{A_0} f dm = \sup_{a_0} \int_{A_0} f dm_n$.

Proof. By Example 3-II), m is a submeasure too. Since $\overline{m}_n(A) \leq \overline{m}(A)$, for every $A \in \mathcal{A}$, then for every $n \in \mathbb{N}$, f is \widetilde{m}_n -totally-measurable on T. According to [17], f is m-integrable and m_n -integrable on T and on every $A \in \mathcal{A}$. By [17], $\int_{A_0} f dm_n \leq \int_{A_0} f dm$, for every $n \in \mathbb{N}$.

Since $m(A_0) = \sup_n m_n(A_0)$, we get that for every $\varepsilon > 0$, there is $n_0(\varepsilon, A_0) = n_0$ so that $m(A_0) < m_{n_0}(A_0) + \frac{\varepsilon}{2M}$, where $M = \sup_{t \in T} |f(t)|$.

Because f is m-integrable and m_{n_0} -integrable on A_0 , we have that for every $\varepsilon > 0$, there is a common partition $\{B_j\}_{j=\overline{1,k}} \in \mathcal{P}_{A_0}$ so that for every $t_j \in B_j$, $|\int_{A_0} f dm - \sum_{j=1}^k f(t_j)m(B_j)| < \frac{\varepsilon}{4}$ and $|\int_{A_0} f dm_{n_0} - \sum_{j=1}^k f(t_j)m_{n_0}(B_j)| < \frac{\varepsilon}{4}$.

Since $\{B_j\}_{j=\overline{1,k}} \in \mathcal{P}_{A_0}$, we observe that there can exist only one set, for instance, B_1 , so that $m(B_1) > 0$ and $m(B_j) = 0$, for every $j = \overline{2,k}$. Then $m_{n_0}(B_j) = 0$, for every $j = \overline{2,k}$.

Consequently, because $m(B_1) = m(A_0)$ and $m_{n_0}(B_1) = m_{n_0}(A_0)$, we have

$$\begin{split} &\int_{A_0} fdm \leq \Big| \int_{A_0} fdm - \sum_{j=1}^k f(t_j)m(B_j) \Big| \\ &+ \Big| \int_{A_0} fdm_{n_0} - \sum_{j=1}^k f(t_j)m_{n_0}(B_j) \Big| \\ &+ |f(t_1)| \cdot |m(B_1) - m_{n_0}(B_1)| \\ &+ \int_{A_0} fdm_{n_0} < \frac{\varepsilon}{2} + M \frac{\varepsilon}{2M} + \int_{A_0} fdm_{n_0} = \\ &= \varepsilon + \int_{A_0} fdm_{n_0}, \\ &\int_{A_0} fdm = \sup \int_{A_0} fdm_n, \text{ as claimed.} \quad \Box \end{split}$$

so $\int_{A_0} f dm = \sup_n \int_{A_0} f dm_n$, as claimed.

6 Classical results for the Gould type set-valued integral

In this section we obtain some classical theorems (such as Hölder inequality, Minkowski inequality, mean convergence theorem, Lebesgue theorem, Fatou lemma) for the Gould type set-valued integral introduced in [30].

Theorem 38 (*Hölder Inequality*) Let $m : A \to \mathbb{R}_+$ be a submeasure of finite variation and $f, g : T \to \mathbb{R}$ m-integrable bounded functions on T. Then

$$\int_{T} |fg| dm \le \left(\int_{T} |f|^{p} dm \right)^{\frac{1}{p}} \cdot \left(\int_{T} |g|^{q} dm \right)^{\frac{1}{q}},$$

or every $n, q \in (1, \infty)$ with $\frac{1}{2} + \frac{1}{2} - 1$

for every $p, q \in (1, \infty)$, with $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. Since (see [17]) for submeasures, *m*-integrability is equivalent to \tilde{m} -totally-measurability, then by Theorem 19-I and Theorem 2.17 [17], |f|, |g|, |fg|, |fg|, $|f|^p$ and $|g|^q$ are also *m*-integrable, so, for every $\varepsilon > 0$, there is a common partition $P_{\varepsilon} = \{A_i\}_{i=\overline{1.n}}$ such that for every $t_i \in A_i, i = \overline{1, n}$, we have:

$$\left| \int_{T} |fg| dm - \sum_{i=1}^{n} |f(t_{i})g(t_{i})| m(A_{i}) \right| < \frac{\varepsilon}{3},$$
$$\left| \int_{T} |f| dm - \sum_{i=1}^{n} |f(t_{i})| m(A_{i}) \right| < \frac{\varepsilon}{3} \text{ and}$$
$$\left| \int_{T} |g| dm - \sum_{i=1}^{n} |g(t_{i})| m(A_{i}) \right| < \frac{\varepsilon}{3}.$$

Since

$$\sum_{i=1}^{n} |f(t_i)g(t_i)|m(A_i)$$

= $\sum_{i=1}^{n} \left[|f(t_i)| (m(A_i))^{\frac{1}{p}} \cdot |g(t_i)| (m(A_i))^{\frac{1}{q}} \right] \le$
 $\le \left(\sum_{i=1}^{n} |f(t_i)|^p m(A_i) \right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^{n} |g(t_i)|^q m(A_i) \right)^{\frac{1}{q}},$

we immediately have the conclusion.

Using the above theorem, we obtain the Minkowski inequality, by a classical proof.

Theorem 39 (*Minkowski inequality*) Let $m : A \rightarrow \mathbb{R}_+$ be a submeasure of finite variation and $f, g : T \rightarrow \mathbb{R}$ m -integrable bounded functions on T. Then

$$\left(\int_T |f+g|^p dm\right)^{\frac{1}{p}} \le \left(\int_T |f|^p dm\right)^{\frac{1}{p}} + \left(\int_T |g|^p dm\right)^{\frac{1}{p}}$$

for every $p \in [1, +\infty)$.

If $m : \mathcal{A} \to \mathbb{R}_+$ is a submeasure of finite variation, we consider the space $\mathcal{L}^p = \{f : T \to \mathbb{R}; f \text{ is} bounded on T and <math>|f|^p$ is *m*-integrable on $T\}$. **Remark 40** From Theorem 19-II, it results that if $f, g \in \mathcal{L}^p$, then $f + g \in \mathcal{L}^p$. So, \mathcal{L}^p is a linear space.

Corollary 41 Let $m : \mathcal{A} \to \mathbb{R}_+$ be a submeasure of finite variation and $p \in [1, +\infty)$. Then the function $|| \cdot || : \mathcal{L}^p \to \mathbb{R}_+$, defined for every $f \in \mathcal{L}^p$ by $||f|| = (\int_T |f|^p dm)^{\frac{1}{p}}$, is a semi-norm.

Definition 42 Let $\mu : \mathcal{A} \to \mathcal{P}_f(X)$ be a set multifunction with $\mu(\emptyset) = \{0\}$. If for every $n \in \mathbb{N}$, $f_n : T \to \mathbb{R}$ is μ -integrable on T, then the sequence (f_n) is said to be mean convergent to f on T if $\lim_{n\to\infty} \int_T (f_n - f) d\mu = \{0\}$ (with respect to h).

Theorem 43 (Mean Convergence Theorem) Let μ : $\mathcal{A} \to \mathcal{P}_{kc}(X)$ be a set multifunction of finite variation, with $\mu(\emptyset) = \{0\}$ and $f_n : T \to \mathbb{R}$, for every $n \in \mathbb{N}$. Suppose (f_n) is an uniformly bounded sequence of μ -integrable functions such that (f_n) is convergent in submeasure to a bounded function $f : T \to \mathbb{R}$. Then f is μ -integrable on T and on every $A \in \mathcal{A}$,

$$\lim_{n \to \infty} \int_A (f_n - f) d\mu = \{0\}$$

(with respect to h)

Proof. Let $M' = \overline{\mu}(T)$, $M_1 = \sup_{t \in T} |f(t)|$, $M_2 = \sup_{t \in T, n \in \mathbb{N}} |f_n(t)|$ and $M = \max\{M_1, M_2\}$.

Since $f_n \xrightarrow{\widetilde{\mu}} f$, it results that for every $\varepsilon > 0$, there exists $n_0(\varepsilon) \in \mathbb{N}$ so that $\widetilde{\mu}(B_n\left(\frac{\varepsilon}{6M'}\right)) < \frac{\varepsilon}{4M}$, for every $n \ge n_0$.

Particularly, $\widetilde{\mu}(B_{n_0}\left(\frac{\varepsilon}{6M'}\right)) < \frac{\varepsilon}{4M}$. By the definition of $\widetilde{\mu}$, there is $C_{n_0} \in \mathcal{A}$ so that $B_{n_0}\left(\frac{\varepsilon}{6M'}\right) \subseteq C_{n_0}$ and $\widetilde{\mu}(C_{n_0}) = \overline{\mu}(C_{n_0}) < \frac{\varepsilon}{4M}$.

First, we prove that f is μ -integrable on C_{n_0} . Indeed, for every $\varepsilon > 0$, there is a partition $P_{\varepsilon} = \{C_{n_0}\} \in \mathcal{P}_{C_{n_0}}$ so that, for every other partition $P = \{D_l\}_{l=\overline{1,p}} \in \mathcal{P}_{C_{n_0}}$, with $P \ge P_{\varepsilon}$ and every $t_l \in D_l, l = \overline{1,p}$ and $c \in C_{n_0}$, we have:

$$h\left(\sum_{l=1}^{p} f(t_l)\mu(D_l), f(c)\mu(C_{n_0})\right)$$

$$\leq \sum_{l=1}^{p} |f(t)| \cdot |\mu(D_l)| +$$

$$+ \frac{\varepsilon}{4M} \cdot M_1 < \overline{\mu}(C_{n_0}) \cdot M_1 + \frac{\varepsilon}{4M} \cdot M_1$$

$$< 2 \cdot \frac{\varepsilon}{4M} \cdot M_1 = \frac{\varepsilon}{2}.$$

Consider another partition $P' = \{E_s\}_{s=\overline{1,q}} \in \mathcal{P}_{C_{n_0}}$, with $P' \ge P_{\varepsilon}$ and $r_s \in E_s$, $s = \overline{1,q}$, arbitrarily.

In a similar way we get
$$h\left(\sum_{s=1}^{q} f(r_s)\mu(E_s), f(c)\mu(C_{n_0})\right) < \frac{\varepsilon}{2}, \text{ whence,}$$
$$h\left(\sum_{l=1}^{p} f(t_l)\mu(D_l), \sum_{s=1}^{q} f(r_s)\mu(E_s)\right) < \varepsilon. \text{ Then } f \text{ is } \mu\text{-integrable on } C_{n_0}.$$

Consequently, according to Theorem 31-II, in order to prove that f is μ -integrable on T, it is sufficient to establish the μ -integrability of f on $T \setminus C_{n_0}$.

Since for every $n \in \mathbb{N}$ f_n is μ -integrable on T, then f_{n_0} is μ -integrable on $T \setminus C_{n_0}$. Consequently, there is a partition $P_{\varepsilon}^{n_0} = \{A_i\}_{i=\overline{1,m_{n_0}}} \in \mathcal{P}_{T \setminus C_{n_0}}$ so that, for every other partition $P \in \mathcal{P}_{T \setminus C_{n_0}}$, with $P \geq P_{\varepsilon}^{n_0}$, we have $h(\sigma(P), \sigma(P_{\varepsilon}^{n_0})) < \frac{\varepsilon}{3}$.

Let $P = \{D_j\}_{j=\overline{1,l}} \in \mathcal{P}_{T \setminus C_{n_0}}$, with $P \ge P_{\varepsilon}^{n_0}$ be arbitrarily, but fixed. For every $t_j \in D_j$, $j = \overline{1,l}$ and every $c_i \in A_i$, $i = \overline{1, m_{n_0}}$, we have:

$$\begin{split} h(\sum_{j=1}^{l} f(t_j)\mu(D_j), \sum_{i=1}^{m_{n_0}} f(c_i)\mu(A_i)) \\ &\leq h\left(\sum_{j=1}^{l} f(t_j)\mu(D_j), \sum_{j=1}^{l} f_{n_0}(t_j)\mu(D_j)\right) + \\ &+ h\left(\sum_{j=1}^{l} f_{n_0}(t_j)\mu(D_j), \sum_{i=1}^{m_{n_0}} f_{n_0}(c_i)\mu(A_i)\right) + \\ &+ h\left(\sum_{i=1}^{m_{n_0}} f_{n_0}(c_i)\mu(A_i), \sum_{i=1}^{m_{n_0}} f(c_i)\mu(A_i)\right) \leq \\ &\leq \overline{\mu}(T \backslash C_{n_0}) \cdot \sup_{t \in cB_{n_0}} |f(t) - f_{n_0}(t)| \\ &+ \frac{\varepsilon}{3} + \overline{\mu}(T \backslash C_{n_0}) \cdot \sup_{t \in cB_{n_0}} |f(t) - f_{n_0}(t)| < \\ &< M' \cdot \frac{\varepsilon}{6M'} + \frac{\varepsilon}{3} + M' \cdot \frac{\varepsilon}{6M'} = \varepsilon. \end{split}$$

A similar inequality for every other partition $P' \in \mathcal{P}_{T \setminus C_{n_0}}$, with $P' \geq P_{\varepsilon}^{n_0}$, may analogously be obtained. Then, by the triangular inequality, f is μ -integrable on $T \setminus C_{n_0}$ and, according to Theorem 4.5-II, f is μ -integrable on T.

Now, we prove that $\lim_{n\to\infty} \int_T (f_n - f) d\mu = \{0\}$ with respect to h. According to Theorem 31-III, there exist $\int_A f d\mu$ and $\int_A f_n d\mu$, for every $n \in \mathbb{N}$ and every $A \in \mathcal{A}$.

We shall use the same $B_n\left(\frac{\varepsilon}{6M'}\right)$, with $n \ge n_0$, as before. By the definition of $\tilde{\mu}$, we get that for every $n \ge n_0$, there exists $C_n \in \mathcal{A}$ so that $B_n\left(\frac{\varepsilon}{6M'}\right) \subseteq C_n$ and $\tilde{\mu}(C_n) = \overline{\mu}(C_n) < \frac{\varepsilon}{4M}$. Then, for every $n \ge n_0$, we have:

$$\begin{split} \left| \int_{A} (f_n - f) d\mu \right| &= \left| \int_{A \setminus C_n} (f_n - f) d\mu \right| \\ &+ \int_{A \cap C_n} (f_n - f) d\mu \Big| \leq \\ &\leq \sup_{t \in A \setminus C_n} |f_n(t) - f(t)| \cdot \overline{\mu} (A \setminus C_n) \\ &+ \sup_{t \in A \cap C_n} |f_n(t) - f(t)| \cdot \overline{\mu} (A \cap C_n) < \\ &< \frac{\varepsilon}{6M'} \cdot M' \\ &+ 2M \cdot \overline{\mu} (C_n) < \frac{\varepsilon}{2} + 2M \cdot \frac{\varepsilon}{4M} = \varepsilon, \end{split}$$

so $\lim_{n \to \infty} \int_A (f_n - f) d\mu = \{0\}$ (with respect to h), for every $A \in \mathcal{A}$.

Theorem 44 (Lebesgue type Theorem) Let $\mu : \mathcal{A} \to \mathcal{P}_{kc}(X)$ be a set multifunction of finite variation, with $\mu(\emptyset) = \{0\}$ and $f_n : T \to \mathbb{R}$, for every $n \in \mathbb{N}$. Suppose $(f_n)_n$ is an uniformly bounded sequence of μ -integrable functions such that $(f_n)_n$ is convergent in submeasure to a bounded function $f : T \to \mathbb{R}$. Then, f is μ -integrable on every $A \in \mathcal{A}$ and

$$\lim_{n \to \infty} \int_A f_n d\mu = \int_A f d\mu \text{ (with respect to } h\text{)}.$$

Proof. By the proof of Theorem 43, it results that f is μ -integrable on every $A \in \mathcal{A}$. Using the same sets as before, we have for every $n \ge n_0$ and every $A \in \mathcal{A}$:

$$\begin{split} h(\int_{A} f_{n} d\mu, \int_{A} f d\mu) \\ &= h(\int_{A \setminus C_{n}} f_{n} d\mu + \int_{A \cap C_{n}} f_{n} d\mu, \int_{A \setminus C_{n}} f d\mu \\ &+ \int_{A \cap C_{n}} f d\mu) \leq h(\int_{A \setminus C_{n}} f_{n} d\mu, \int_{A \setminus C_{n}} f d\mu) \\ &+ h(\int_{A \cap C_{n}} f_{n} d\mu, \int_{A \cap C_{n}} f d\mu) \leq \\ &\leq \sup_{t \in A \setminus C_{n}} |f_{n}(t) - f(t)| \cdot \overline{\mu}(A \setminus C_{n}) \\ &+ \sup_{t \in A \cap C_{n}} |f_{n}(t) - f(t)| \cdot \overline{\mu}(A \cap C_{n}) < \frac{\varepsilon}{6M'} \cdot M' \\ &+ 2M \cdot \overline{\mu}(C_{n}) < \frac{\varepsilon}{2} + 2M \cdot \frac{\varepsilon}{4M} = \varepsilon, \end{split}$$

and the conclusion follows.

Theorem 45 (*Fatou Lemma*) Suppose \mathcal{A} is a σ algebra, $\mu : \mathcal{A} \to \mathbb{R}_+$ is a submeasure of finite variation so that $\tilde{\mu}$ is o-continuous and $(f_n)_{n \in \mathbb{N}}$ is a sequence of uniformly bounded, $\tilde{\mu}$ -totally-measurable functions $f_n: T \to \mathbb{R}$. Then

$$\int_T \liminf_n f_n d\mu \le \liminf_n \int_T f_n d\mu.$$

Proof. For every $n \in \mathbb{N}$, consider g_n defined for every $t \in T$ by $g_n(t) = \inf_{k \geq n} f_k(t)$. Let also be $f : T \to \mathbb{R}$, $f(t) = \lim_{n \to \infty} g_n(t)$, for every $t \in T$. We observe that $g_n \stackrel{ae}{\to} f$ and $g_n \leq f_n$, for every $n \in \mathbb{N}$.

According to Theorem 24, $(g_n)_n$ is also a sequence of uniformly bounded, $\tilde{\mu}$ -totally-measurable functions, so, by Corollary 25, f is $\tilde{\mu}$ -totally-measurable on T.

By [17], f_n and f are μ -integrable on T, for every $n \in \mathbb{N}$.

Since $g_n \xrightarrow{ae} f$ and $\tilde{\mu}$ is an o-continuous submeasure on $\mathcal{P}(T)$, then, according to Li [23], $g_n \xrightarrow{\tilde{\mu}} f$, so, by [13],

$$\int_{T} \liminf_{n} f_n d\mu = \int_{T} f d\mu = \lim_{n \to \infty} \int_{T} g_n d\mu.$$

Consequently,

$$\int_{T} \liminf_{n} f_{n} d\mu = \liminf_{n} \int_{T} g_{n} d\mu$$
$$\leq \liminf_{n} \int_{T} f_{n} d\mu.$$

This completes the proof.

References:

- G. Apreutesei, N.E. Mastorakis, A. Croitoru, A. Gavriluţ, On the translation of an almost linear topology, *WSEAS Transactions on Mathematics*, Vol.8, (2009), pp. 479–488.
- [2] U. Bandyopadhyay, On vector measures with the Darboux property, *Quart. J. Oxford Math.*, (1974), pp. 57-61.
- [3] I. Chiţescu, Finitely purely atomic measures and L_p-spaces, An. Univ. Bucureşti Şt. Natur. 24 (1975), 23-29.
- [4] I. Chiţescu, Finitely purely atomic measures: coincidence and rigidity properties, *Rend. Circ. Mat. Palermo*, vol. 50, (2001), No. 3, pp. 455-476.
- [5] A. Croitoru, A. Gavriluţ, N. E. Mastorakis, Convergence theorems for totally-measurable functions, WSEAS Trans. Math., Vol.8, (2009), pp. 614–623.

- [6] A. Croitoru, A. Gavriluţ,N.E. Mastorakis, G. Gavriluţ, On different types of non-additive set multifunctions, *WSEAS Trans. Math.*, Vol.8, (2009), pp. 246-257.
- [7] L. Drewnowski, Topological rings of sets, continuous set functions, Integration, I, II, III, Bull. Acad. Polon. Sci. Sér. Math. Astron. Phys., Vol. 20, (1972), pp. 269-276, pp. 277-286.
- [8] L. Drewnowski,T. Luczak, On nonatomic submeasures on N, Arch. Math., vol. 91, (2008), pp. 76-85.
- [9] L. Drewnowski, T. Luczak, On nonatomic submeasures on N II, J. Math. Anal. Appl., vol.347, (2008), no 2, pp. 442-449.
- [10] N. J. Fernández, Are diffused, Radon measures nonatomic?, Papers in honor Pablo Bobillo Guerrero (Spanish), 261-265, Univ. Granada, 1992.
- [11] R. J. Gardner, W. F. Pfeffer, Are diffused, regular, Radon measures σ -finite?, *J. London Math. Soc.*, vol.20, (1979), pp. 485-494.
- [12] A. Gavriluţ, A Gould type integral with respect to a multisubmeasure, *Math. Slovaca*, vol.58, (2008), No. 1, pp. 1-20.
- [13] A. Gavriluţ, On some properties of the Gould type integral with respect to a multisubmeasure, *An. Şt. Univ. Iaşi*, vol. 52, (2006), no 1, pp. 177-194.
- [14] A. Gavriluţ, The general Gould type integral with respect to a multisubmeasure, *Math. Slovaca*, vol.60, (2010), No. 3, pp. 289-318.
- [15] A. Gavriluţ, Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions, *Fuzzy Sets and Systems*, vol.160, (2009), pp. 1308-1317.
- [16] A. Gavriluţ, A. Croitoru, Non-atomicity for fuzzy and non-fuzzy multivalued set functions, *Fuzzy Sets and Systems*, vol.160, (2009), pp. 2106-2116.
- [17] A. Gavriluţ, A. Petcu, A Gould type integral with respect to a submeasure, *An. Şt. Univ. Iaşi*, Tomul LIII, 2007, f. 2, pp. 351-368.
- [18] A. Gavriluţ, A. Croitoru, N. E. Mastorakis, G. Gavriluţ, Measurability and Gould integrability in finitely purely atomic multisubmeasure spaces, WSEAS Trans. Math., Vol.8, (2009), pp. 435-444.
- [19] A. Gavriluţ, A. Croitoru, N. E. Mastorakis, Diffusion and semi-convexity of fuzzy set multifunctions, WSEAS Trans. Math., vol.9, (2010), pp. 561-570.
- [20] G. G. Gould, On integration of vector-valued measures, *Proc. London Math. Soc.*, vol.15, (1965), pp. 193-225.

- [21] P. Holický, C. E. Weil, L. Zajiček, A note on the Darboux property of Fréchet derivatives, *Real Anal. Exchange*, vol.32, (2007), pp. 489-494.
- [22] S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis, vol. I, Kluwer Acad. Publ., Dordrecht, 1997.
- [23] J. Li, Order continuous of monotone set function and convergence of measureable functions sequence, *Applied Mathematics and Computation*, vol.135, (2003), pp. 211-218.
- [24] J. Li, A note on the null-additivity of the fuzzy measure, *Fuzzy Sets and Systems*, vol.125, (2002), pp. 269-271.
- [25] N.E. Mastorakis, A. Gavriluţ, A. Croitoru, G. Apreutesei, On Darboux property for fuzzy multimeasures, *Proceedings of the 10th WSEAS International Conference on Fuzzy Systems [F-S'09]*, Prague, Czech Republic, March 23-25, 2009, pp. 54-58.
- [26] E. Pap, Null-additive Set Functions, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995.
- [27] A. Petruşel, G. Moţ, Multivalued Analysis and Mathematical Economics, House of the Book of Science, Cluj Napoca, 2004.
- [28] A. Precupanu, A. Croitoru, A Gould type integral with respect to a multimeasure, I, An. Şt. Univ. Iaşi, vol.48, (2002), pp. 165-200.
- [29] A. Precupanu, A. Gavriluţ, A. Croitoru, A fuzzy Gould type integral, *Fuzzy Sets and Systems*, vol.161, (2010), pp. 661-680.
- [30] A. Precupanu, A. Gavriluţ, A. Croitoru, On a generalized Gould type set valued integral, submitted for publication.