Classical theorems for a Gould type integral

ALINA GAVRILUŢ
Faculty of Mathematics
University "Al.I. Cuza" Iaşi
Romania
gavrilut@uaic.ro

ANCA CROITORU
Faculty of Mathematics
University "Al.I. Cuza" Iaşi,
Romania
croitoru@uaic.ro

Abstract

In this paper, we continue the study of the Gould type integral introduced in [30] which generalizes the results of $[12,13,17,28]$ and [29]. We obtain various classical properties, such as a mean type theorem, a Lebesgue (Fatou respectively) type theorem, Hölder and Minkowski inequalities etc. Other results concerning measurability, semi-convexity, diffusion and atoms are also established.

Key-Words: (multi)(sub)measure, semi-convex, Darboux property, diffused, atom, totally-measurable, Gould integral, Lebesgue theorem, Fatou lemma.

1 Introduction

In [20] G. G. Gould introduced an integral for bounded real functions with respect to finitely additive set functions taking values in a Banach space, integral which is more general that the Lebesgue one.

In the last years, the non-additive case and the set-valued case received a special attention because of their applications in mathematical economics, decision theory, artificial intelligence, statistics or theory of games.
A. Precupanu and A. Croitoru generalized Gould's results [20], studying in [28] a Gould type integral for multimeasures with values in $\mathcal{P}_{k c}(X)$, the family of all compact convex nonempty subsets of a real Banach space X. Also, Gould type integrals with respect to a (multi)submeasure were studied in [12]-[19]. In [30], A. Precupanu, A. Gavriluţ and A. Croitoru introduced and studied a Gould type integral for bounded real functions with respect to a set multifunction of finite variation with values in $\mathcal{P}_{b f}(X)$, the family of all bounded closed nonempty subsets of a real Banach space X.

On the other hand, notions as atoms, pseudoatoms, Darboux property, non-atomicity (with different nonequivalent variants - see, for instance, [8, 9]), (finitely) purely atomicity, semi-convexity, diffusion were intensively studied in recent years, due to their applications in many classical measure theory problems, physics and convex analysis (see $[1,3,4,5,6$, $8,9,10,11,21,23,24,25,26])$.

That is why, in this paper, we study these notions for the Gould type integral introduced in [30]. We prove that the Lebesgue theorem, Hölder and Minkowski inequalities, Fatou lemma have here a cor-
respondent and our integral preserves properties like semi-convexity or diffusion. Results regarding measurability are also established.

2 Basic notions

Let $(X,\|\cdot\|)$ be a real normed space, $\mathcal{P}_{0}(X)$ the family of all nonvoid subsets of $X, \mathcal{P}_{b}(X)$ the family of all nonvoid bounded subsets of $X, \mathcal{P}_{f}(X)$ the family of all nonvoid closed subsets of $X, \mathcal{P}_{b f}(X)$ the family of all nonvoid closed bounded subsets of $X, \mathcal{P}_{b f c}(X)$ the family of all nonvoid closed bounded convex subsets of $X, \mathcal{P}_{k c}(X)$ the family of all nonvoid compact convex subsets of X and h the Hausdorff pseudometric on $\mathcal{P}_{f}(X)$, which becomes a metric on $\mathcal{P}_{b f}(X)$. It is known that $h(M, N)=$ $\max \{e(M, N), e(N, M)\}$, where $e(M, N)=$ $\sup d(x, N)$, for every $M, N \in \mathcal{P}_{f}(X)$ is the excess $x \in M$
of M over N and $d(x, N)$ is the distance from x to N with respect to the distance induced by the norm of X.

We denote $|M|=h(M,\{0\})=\sup _{x \in M}\|x\|$, for every $M \in \mathcal{P}_{0}(X)$, where 0 is the origin of X.

For every $M, N \in \mathcal{P}_{0}(X)$ and every $\alpha \in \mathbb{R}$, let $M+N=\{x+y \mid x \in M, y \in N\}$ and $\alpha M=$ $\{\alpha x \mid x \in M\}$. We denote by \bar{M} the closure of M with respect to the topology induced by the norm of X.

On $\mathcal{P}_{0}(X)$ we consider the Minkowski addition $" \stackrel{\bullet}{+}$ [18], defined by:
$M \dot{+} N=\overline{M+N}$, for every $M, N \in \mathcal{P}_{0}(X)$.

Let T be an abstract nonvoid set, $\mathcal{P}(T)$ the family of all subsets of T and \mathcal{C} a ring of subsets of T.

By $i=\overline{1, n}$ we mean $i \in\{1,2, \ldots, n\}$, for $n \in$ \mathbb{N}^{*}, where \mathbb{N} is the set of all naturals and $\mathbb{N}^{*}=\mathbb{N} \backslash\{0\}$. We also denote $\mathbb{R}_{+}=[0,+\infty)$ and $\overline{\mathbb{R}}_{+}=[0,+\infty]$.

Some properties of h are presented in the following proposition (see Hu and Papageorgiu [22], Petruşel and Moţ [27]).

Proposition 1 Let $A, B, C, D, A_{n}, B_{n} \in \mathcal{P}_{0}(X)$, for every $n \in \mathbb{N}^{*}$. Then:
I) $(\alpha+\beta) A=\alpha A+\beta A$, for every $\alpha, \beta \in \mathbb{R}_{+}$ and convex A.
II) $(A \dot{+} B) \dot{+} C=A \dot{+}(B \dot{+} C)$.
III) $(A \dot{+} B) \dot{+}(C \dot{+} D)=(A \dot{+} C) \dot{+}(B \dot{+} D)$.
IV) $h(A, B)=h(\bar{A}, \bar{B})$.
V) $e(A, B)=0$ if and only if $A \subseteq \bar{B}$.
VI) $h(A, B)=0$ if and only if $\bar{A}=\bar{B}$.
VII) $h(\alpha A, \alpha B)=|\alpha| h(A, B)$, for all $\alpha \in \mathbb{R}$.
VIII) $h\left(\sum_{i=1}^{n} A_{i}, \sum_{i=1}^{n} B_{i}\right) \leq \sum_{i=1}^{n} h\left(A_{i}, B_{i}\right)$.
IX) $h(\alpha A, \beta A) \leq|\alpha-\beta| \cdot|A|$, for all $\alpha, \beta \in \mathbb{R}$.
X) $h(\alpha A \dot{+} \beta B, \gamma A \dot{+} \delta B) \leq|\alpha-\gamma| \cdot|A|+\mid \beta-$ $\delta|\cdot| B \mid$, for all $\alpha, \beta, \gamma, \delta \in \mathbb{R}$.
XI) $h(A+C, B+C)=h(A, B)$, for every $A, B \in$ $\mathcal{P}_{b f c}(X)$ and $C \in \mathcal{P}_{b}(X)$.
XII) If $A, A_{n} \in \mathcal{P}_{b}(X)$ and $\alpha, \alpha_{n} \in \mathbb{R}$, for every $n \in \mathbb{N}^{*}$, are so that $h\left(A_{n}, A\right) \rightarrow 0$ and $\alpha_{n} \rightarrow \alpha$, then $h\left(\alpha_{n} A_{n}, \alpha A\right) \rightarrow 0$.

We now recall some classical notions:
Definition $2 A$ set function $m: \mathcal{C} \rightarrow \overline{\mathbb{R}}_{+}$, with $m(\emptyset)=0$, is said to be .
I) monotone if $m(A) \leq m(B)$, for every $A, B \in$ \mathcal{C}, with $A \subseteq B$.
II) superadditive if $m\left(\bigcup_{i \in I} A_{i}\right) \geq \sum_{i \in I} m\left(A_{i}\right)$, for every sequence of pairwise disjoint sets $\left(A_{i}\right)_{i \in I} \subset \mathcal{C}$, with $\bigcup_{i \in I} A_{i} \in \mathcal{C}, I \subseteq \mathbb{N}$.
III) subadditive if $m(A \cup B) \leq m(A)+m(B)$, for every $A, B \in \mathcal{C}$, with $A \cap B=\emptyset$.
IV) a submeasure (in Drewnowski's sense [7]) if m is monotone and subadditive.

Example 3 I) If $\nu: \mathcal{C} \rightarrow \mathbb{R}_{+}$is a finitely additive set function, then $m: \mathcal{C} \rightarrow[0,1]$ defined for every $A \in \mathcal{C}$ by $m(A)=\frac{\nu(A)}{1+\nu(A)}$ is a submeasure.
II) $([8,9])$ Let $m_{n}: \mathcal{C} \rightarrow \mathbb{R}_{+}$be a submeasure for every $n \in \mathbb{N}$. Then the set function $m: \mathcal{C} \rightarrow \overline{\mathbb{R}}_{+}$ defined by $m(A)=\sup _{n} m_{n}(A)$, for every $A \in \mathcal{C}$, is a submeasure, too.

Remark 4 Suppose $m: \mathcal{C} \rightarrow \mathbb{R}_{+}$is a submeasure of finite variation. If \bar{m} denotes the variation of m on $\mathcal{P}(T)$, then:
I) \bar{m} is finitely additive on \mathcal{C}.
II) The following statements are equivalent:
i) m is o-continuous;
ii) m is σ-subadditive;
iii) \bar{m} is σ-additive on \mathcal{C};
iv) \bar{m} is o-continuous on \mathcal{C}.

Definition 5 For a set multifunction $\mu: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$, with $\mu(\emptyset)=\{0\}$, we consider:
I) the extended real valued set function $|\mu|$ defined by $|\mu|(A)=|\mu(A)|$, for every $A \in \mathcal{C}$.
II) the variation $\bar{\mu}$ of μ defined by $\bar{\mu}(A)=$ $\sup \left\{\sum_{i=1}^{n}\left|\mu\left(A_{i}\right)\right|\right\}$, for every $A \in \mathcal{P}(T)$, where the supremum is extended over all finite families of pairwise disjoint sets $\left\{A_{i}\right\}_{i=\overline{1, n}} \subset \mathcal{A}$, with $A_{i} \subseteq A$, for every $i \in\{1, \ldots, n\}$.
μ is said to be of finite variation on \mathcal{C} if $\bar{\mu}(A)<$ ∞, for every $A \in \mathcal{C}$.

Definition 6 Let $\mu: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ be a set multifunction, with $\mu(\emptyset)=\{0\}$. μ is said to be
I) monotone if $\mu(A) \subseteq \mu(B)$, for every $A, B \in \mathcal{C}$, with $A \subseteq B$.
II) a multimeasure if $\mu(A \cup B)=\mu(A)+\mu(B)$, for every $A, B \in \mathcal{C}$, with $A \cap B=\emptyset$.
III) a multisubmeasure if μ is monotone and
$\mu(A \cup B) \subseteq \mu(A)+\mu(B)$, for every $A, B \in \mathcal{C}$, with $A \cap B=\emptyset$
(or, equivalently, for every $A, B \in \mathcal{C}$).
IV) h - σ-subadditive if $\left|\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)\right| \leq$ $\sum_{n=1}^{\infty}\left|\mu\left(A_{n}\right)\right|$, for every sequence of pairwise disjoint sets $\left(A_{n}\right)_{n \in \mathbb{N}^{*}} \subset \mathcal{C}$, with $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{C}$.
$V)$ null-additive if $\mu(A \cup B)=\mu(A)$, for every $A, B \in \mathcal{C}$, with $\mu(B)=\{0\}$.
VI) null-null-additive if $\mu(A \cup B)=\{0\}$, for ev ery $A, B \in \mathcal{C}$, with $\mu(A)=\mu(B)=\{0\}$.
VII) order-continuous (shortly, o-continuous) if $\lim _{n \rightarrow \infty} h\left(\mu\left(A_{n}\right), \mu(A)\right)=0$, for every decreasing sequence of sets $\left(A_{n}\right)_{n \in \mathbb{N}^{*}} \subset \mathcal{C}$, with $\bigcap_{n=1}^{\infty} A_{n}=\emptyset$ (denoted by $A_{n} \searrow \emptyset$).
VIII) increasing convergent if
$\lim _{n \rightarrow \infty} h\left(\mu\left(A_{n}\right), \mu(A)\right)=0$, for every increasing se-
quence of sets $\left(A_{n}\right)_{n \in \mathbb{N}^{*}} \subset \mathcal{C}$, with $\bigcup_{n=1}^{\infty} A_{n}=A \in \mathcal{C}$ (denoted by $A_{n} \nearrow A$).

Remark 7 If μ is $\mathcal{P}_{f}(X)$-valued, then in Definition 6-II), III) it usually appears the Minkowski addition instead of the classical addition because the sum of two closed sets is not, generally, a closed set.

Remark 8 . I) $\bar{\mu}$ is monotone and superadditive on $\mathcal{P}(T)$. Also (see [12]), if $\mu: \mathcal{C} \rightarrow \mathcal{P}_{f}(X)$ is a multi(sub)measure, then $\bar{\mu}$ is finitely additive on \mathcal{C} and $|\mu|$ is a submeasure.
II) Every monotone multimeasure is, particularly, a multisubmeasure. Also, any multisubmeasure is null-additive. Any null-additive set multifunction is null-null-additive. The converses are not valid.
III) Let $\mu: \mathcal{A} \rightarrow \mathcal{P}_{f}(X)$ be a multisubmeasure of finite variation. The following statements are equivalent:
i) μ is h - σ-subadditive;
ii) μ is order-continuous;
iii) $\bar{\mu}$ is σ-additive on \mathcal{C}.

3 Semi-convexity, Darboux property, diffusion and atoms of set multifunctions

We present some properties regarding semi-convexity, Darboux property, diffusion and atoms for set multifunctions. These properties will be discussed in section 5 in relation with the Gould type set-valued integral.

The following notions are classical in measure theory, but they are extended to the set valued case (see for instance [2, 3, 4, 15, 16]).

Definition 9 Let $\mu: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ be a set multifunction, with $\mu(\emptyset)=\{0\}$.
I) We say that μ
i) is semi-convex iffor every $A \in \mathcal{C}$, with $\mu(A) \supseteq$ $\{0\}$, there is a set $B \in \mathcal{C}$ such that $B \subseteq A$ and $\mu(B)=\frac{1}{2} \mu(A)$.
ii) has the Darboux property if for every $A \in \mathcal{C}$, with $\mu(A) \supsetneq\{0\}$ and every $p \in(0,1)$, there exists a set $B \in \mathcal{C}$ such that $B \subseteq A$ and $\mu(B)=p \mu(A)$.
iii) is diffused iffor every $t \in T$, with $\{t\} \in \mathcal{C}$, we have $\mu(\{t\})=\{0\}$.
II) A set $A \in \mathcal{C}$ is said to be an atom of μ if $\mu(A) \supseteq\{0\}$ and for every $B \in \mathcal{C}$, with $B \subseteq A$, we have $\mu(B)=\{0\}$ or $\mu(A \backslash B)=\{0\}$.
III) We say that μ is
i) finitely purely atomic if there is a finite disjoint family $\left(A_{i}\right)_{i=\overline{1, n}} \subset \mathcal{C}$ of atoms of μ so that $T=\bigcup_{i=1}^{n} A_{i}$.
ii) purely atomic if there is at most a countable number of atoms $\left(A_{n}\right)_{n} \subset \mathcal{C}$ of μ so that $\mu\left(T \backslash \bigcup_{n=1}^{\infty}\right.$ $\left.A_{n}\right)=\{0\}$ (evidently, here \mathcal{C} must be a σ-algebra).
iii) non-atomic if it has no atoms.
IV) We say that $\mu: \mathcal{C} \rightarrow \mathcal{P}_{k c}(\mathbb{R})$ is induced by a set function $m: \mathcal{C} \rightarrow \mathbb{R}_{+}$, with $m(\emptyset)=0$, if $\mu(A)=$ $[0, m(A)]$, for every $A \in \mathcal{C}$.

Remark 10 I) The Lebesgue measure μ is diffused. Also, the set functions $m_{1}, m_{2}: \mathcal{C} \rightarrow \mathbb{R}_{+}$defined for every $A \in \mathcal{C}$ by $m_{1}(A)=\sqrt{\mu(A)}$ and $m_{2}(A)=$ $\frac{\mu(A)}{1+\mu(A)}$ are diffused submeasures. The same are the multisubmeasures induced by them.
II) If $\mu_{1}, \mu_{2}: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ are diffused multimeasures, then the same is the multimeasure $\mu_{1}+\mu_{2}$ defined by $\left(\mu_{1}+\mu_{2}\right)(A)=\mu_{1}(A)+\mu_{2}(A)$,for every $A \in \mathcal{C}$.
III) Let $\mu: \mathcal{C} \rightarrow \mathcal{P}_{0}(X)$ be a set multifunction, with $\mu(\emptyset)=\{0\}$. Then the following statements are equivalent:
a) μ is diffused;
b) $|\mu|$ is diffused;
c) $\bar{\mu}$ is diffused on \mathcal{C}.

The following result is obviously true.
Proposition 11 If the set multifunction $\mu: \mathcal{C} \rightarrow$ $\mathcal{P}_{0}(X)$, with $\mu(\emptyset)=\{0\}$, has the Darboux property, then it is semi-convex.

Under some assumptions, the converse of Proposition 11 is also valid, as shown below:

Theorem 12 Let \mathcal{C} be a σ-ring and $\mu: \mathcal{C} \rightarrow$ $\mathcal{P}_{b f c}(X)$ a monotone increasing convergent multimeasure. Then μ has the Darboux property if and only if μ is semi-convex.

Proof. The "only if" part results from Proposition 11.
The "if' part. Every $p \in(0,1)$ has an expansion $p=\sum_{n=1}^{\infty} \frac{a_{n}}{2^{n}}$, where $a_{n} \in\{0,1\}$, for every $n \in \mathbb{N}^{*}$. Let $A \in \mathcal{C}$, so that $\mu(A) \supsetneq\{0\}$ and let $p \in(0,1)$.

By the semi-convexity of μ, there is $B_{1} \in \mathcal{C}$ so that $B_{1} \subseteq A$ and $\mu\left(B_{1}\right)=\frac{a_{1}}{2} \mu(A)$.

Analogously, there is $B_{2} \in \mathcal{C}$ so that $B_{2} \subseteq$ $A \backslash B_{1}$ and $\mu\left(B_{2}\right)=\frac{a_{2}}{2^{2}} \mu(A)$ and so on. Consider $B=\bigcup_{n=1}^{\infty} B_{n}=\bigcup_{n=1}^{\infty}\left(\bigcup_{k=1}^{n} B_{k}\right) \in \mathcal{C}$. We have
$\mu(B)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \mu\left(B_{k}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{a_{k}}{2^{k}} \mu(A)$ (with respect to h). By Proposition 1-I and XII, it follows $\mu(B)=p \mu(A)$, as claimed.

Remark 13 I) If μ is monotone, then μ is non-atomic if and only if for every $A \in \mathcal{C}$, with $\mu(A) \supsetneq\{0\}$, there exists $B \in \mathcal{C}$, with $B \subseteq A, \mu(B) \supsetneq\{0\}$ and $\mu(A \backslash B) \supseteq\{0\})$.
II) Let $\nu: \mathcal{C} \rightarrow \mathbb{R}_{+}$be a set function, with $\nu(\emptyset)=$ 0 and μ the set multifunction induced by ν. Then μ has the Darboux property if and only if ν has it.
III) [15] Suppose T is a locally compact Hausdorff space, \mathcal{B} is the Borel δ-ring generated by the compact subsets of T and $\mu: \mathcal{B} \rightarrow \mathcal{P}_{f}(X)$ is a multisubmeasure. Then μ is non-atomic if and only if it is diffused.

$4 \widetilde{\mu}$-totally-measurability

In this section we present some properties of $\widetilde{\mu}$ -totally-measurable functions. In the sequel, \mathcal{A} is an algebra of subsets of $T, \mu: \mathcal{A} \rightarrow \mathcal{P}_{f}(X)$ is a set multifunction so that $\mu(\emptyset)=\{0\}$ and $f: T \rightarrow \mathbb{R}$ an arbitrary function.

Definition 14 I) A partition of a set $A \in \mathcal{A}$ is a finite family $P=\left\{A_{i}\right\}_{i=\overline{1, n}}$ of pairwise disjoint sets of \mathcal{A} such that $\bigcup_{i=1}^{n} A_{i}=A$.

We denote by \mathcal{P} the class of all partitions of T and if $A \in \mathcal{A}$ is fixed, by \mathcal{P}_{A}, the class of all partitions of A.
II) For a set multifunction $\mu: \mathcal{A} \rightarrow \mathcal{P}_{0}(X)$, we consider the extended real valued set function $\widetilde{\mu}$ defined by $\widetilde{\mu}(A)=\inf \{\bar{\mu}(B) ; A \subseteq B, B \in$ $\mathcal{A}\}$, for every $A \in \mathcal{P}(T)$.

Remark 15 I) $\widetilde{\mu}(A)=\bar{\mu}(A)$, for every $A \in \mathcal{A}, \widetilde{\mu}$ is monotone and if $\bar{\mu}$ is subadditive, then $\widetilde{\mu}$ is also subadditive.
II) Suppose $\mu: \mathcal{A} \rightarrow \mathcal{P}_{f}(X)$ is a multisubmeasure of finite variation. Then:
i) $\widetilde{\mu}$ is a submeasure.
ii) If, moreover, μ is h - σ-subadditive, then $\widetilde{\mu}$ is σ-subadditive.

Definition 16 I) f is said to be $\widetilde{\mu}$-totally-measurable on (T, \mathcal{A}, μ) iffor every $\varepsilon>0$ there exists a partition $P_{\varepsilon}=\left\{A_{i}\right\}_{i=\overline{0, n}}$ of T such that:
$(*)\left\{\begin{array}{l}a) \widetilde{\mu}\left(A_{0}\right)<\varepsilon \text { and } \\ b) \quad \sup _{t, s \in A_{i}}|f(t)-f(s)|=\operatorname{osc}\left(f, A_{i}\right)<\varepsilon, \\ \\ \quad \text { for every } i=\overline{1, n} .\end{array}\right.$
II) f is said to be $\widetilde{\mu}$-totally-measurable on $B \in \mathcal{A}$ if the restriction $\left.f\right|_{B}$ of f to B is $\widetilde{\mu}$-totally measurable on $\left(B, \mathcal{A}_{B}, \mu_{B}\right)$, where $\mathcal{A}_{B}=\{A \cap B ; A \in \mathcal{A}\}$ and $\mu_{B}=\left.\mu\right|_{\mathcal{A}_{B}}$.

One can easily observe that if f is $\widetilde{\mu}$-totallymeasurable on T, then f is $\widetilde{\mu}$-totally-measurable on every $A \in \mathcal{A}$.

Definition 17 We say that a property (P) holds μ almost everywhere (shortly, μ-ae) if there is $A \in$ $\mathcal{P}(T)$, with $\widetilde{\mu}(A)=0$, so that the property (P) is valid on $T \backslash A$.

Definition 18 Let $f_{n}: T \rightarrow \mathbb{R}$ be a real function for every $n \in \mathbb{N}$. One says that the sequence $\left(f_{n}\right)$
I) converges in submeasure to f (denoted by $\left.f_{n} \xrightarrow{\widetilde{\mu}} f\right)$ if for every $\delta>0, \lim _{n \rightarrow \infty} \widetilde{\mu}\left(B_{n}(\delta)\right)=0$, where

$$
B_{n}(\delta)=\left\{t \in T ;\left|f_{n}(t)-f(t)\right| \geq \delta\right\}
$$

II) converges almost everywhere to f (denoted by
$\left.f_{n} \xrightarrow{\text { a.e. }} f\right)$ if there is $A \in \mathcal{P}(T)$ so that $\widetilde{\mu}(A)=0$ and $\left(f_{n}\right)$ pointwise converges to f on $T \backslash A$.
III) (Li $[23,24])$ is almost uniformly convergent on T (with respect to $\widetilde{\mu}$), denoted by $f_{n} \xrightarrow{a u} f$, if there exists $\left(A_{k}\right)_{k \in \mathbb{N}^{*}} \subset \mathcal{A}$, with $\lim _{k \rightarrow \infty} \widetilde{\mu}\left(A_{k}\right)=0$, such that f_{n} converges to f on $T \backslash A_{k}$ uniformly for any fixed $k \in \mathbb{N}^{*}$.

From now on, μ is supposed to be of finite variation.

Theorem 19 Let $\mu: \mathcal{A} \rightarrow \mathcal{P}_{f}(X)$ be a multisubmeasure.
I) ([11]) If $f, g: T \rightarrow \mathbb{R}$ are bounded $\widetilde{\mu}$-totallymeasurable functions, then:
i) $f+g$ is $\widetilde{\mu}$-totally-measurable;
ii) λf is $\widetilde{\mu}$-totally-measurable, for every $\lambda \in \mathbb{R}$;
iii) f^{2} and $f g$ are $\widetilde{\mu}$-totally-measurable;
iv) $|f|^{p}$ is $\widetilde{\mu}$-totally-measurable, for every $p \in$ $[1,+\infty)$;
v) If $\inf _{t \in T} f(t)>0$, then $\frac{1}{f}$ is $\widetilde{\mu}$-totallymeasurable.
II) Suppose $f, g: T \rightarrow \mathbb{R}$ are bounded functions. If $|f|^{p}$ and $|g|^{p}$ are $\widetilde{\mu}$-totally-measurable for an arbitrary $p \in[1,+\infty)$, then $|f+g|^{p}$ is $\widetilde{\mu}$-totallymeasurable.
III) ([13]) If for every $n \in \mathbb{N}, f_{n}: T \rightarrow \mathbb{R}$ is bounded $\widetilde{\mu}$-totally-measurable and $\left(f_{n}\right)$ is convergent in submeasure to a bounded function $f: T \rightarrow \mathbb{R}$, then f is $\widetilde{\mu}$-totally-measurable.

Remark 20 If $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz, then $\varphi \circ f$ is $\widetilde{\mu}$-totally-measurable.

Proposition 21 Let $\mu: \mathcal{A} \rightarrow \mathcal{P}_{f}(X)$ be a (multi)(sub)measure, $f: T \rightarrow \mathbb{R}$ a bounded function and $A, B \in \mathcal{A}$, with $A \cap B=\emptyset$. Then f is $\widetilde{\mu}$-totallymeasurable on $A \cup B$ if and only if it is $\widetilde{\mu}$-totallymeasurable on A and $\tilde{\mu}$-totally-measurable on B.

Proof. The if part is straightforward. For the only if part, by the $\widetilde{\mu}$-totally-measurability of f on A and B, there are $P_{\varepsilon}^{A}=\left\{A_{i}\right\}_{i=\overline{0, n}} \in \mathcal{P}_{A}$ and $P_{\varepsilon}^{B}=\left\{B_{j}\right\}_{i=\overline{0, q}} \in \mathcal{P}_{B}$ satisfying the condition $(*)$. Since $\bar{\mu}$ is additive on \mathcal{A}, then $P_{\varepsilon}^{A \cup B}=\left\{A_{0} \cup\right.$ $\left.B_{0}, A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{q}\right\} \in \mathcal{P}_{A \cup B}$ also satisfies condition $(*)$, so f is $\widetilde{\mu}$-totally-measurable on $A \cup$ B.

Remark 22 I) In the above proposition, A and B need not to be disjoint. Indeed, if we take arbitrary $A, B \in \mathcal{A}$, since $A \cup B=(A \backslash B) \cup B$ and $\widetilde{\mu}$-totallymeasurability is hereditary, the statement follows.
II) Under the assumptions of the above proposition, if $\left\{A_{i}\right\}_{i=\overline{1, p}} \subset \mathcal{A}$, then f is $\widetilde{\mu}$-totally-measurable on $\bigcup_{i=1}^{p} A_{i}$ if and only if the same is f on every $A_{i}, i=$ $\overline{1, p}{ }^{i}$.

Proposition 23 If \mathcal{A} is a σ-algebra, $\mu: \mathcal{A} \rightarrow \mathcal{P}_{f}(X)$ is an o-continuous (multi)(sub)measure, $f: T \rightarrow \mathbb{R}$ is a bounded function and $\left(A_{n}\right)_{n} \subset \mathcal{A}$ are pairwise disjoint, then f is $\widetilde{\mu}$-totally-measurable on every $A_{n}, n \in \mathbb{N}$ if and only if the same is f on $A=\bigcup_{n=1}^{\infty} A_{n}$.

Proof. The only if part immediately follows. The if part: Since μ is an o-continuous (multi)(sub)measure of finite variation, then $\bar{\mu}$ is additive on \mathcal{A}, so $\bar{\mu}$ is also o-continuous on \mathcal{A}. We observe that $A \backslash \bigcup_{k=1}^{n} A_{k} \searrow \emptyset$, so for every $\varepsilon>0$, there is $n_{0} \in \mathbb{N}$, with $\bar{\mu}\left(A \backslash \bigcup_{k=1}^{n_{0}}\right.$ $\left.A_{k}\right)<\varepsilon$.

Since for every $l=\overline{1, n_{0}}, f$ is $\widetilde{\mu}$ -totally-measurable on A_{l}, let $\left\{B_{j}^{1}\right\}_{j=0, p_{1}}$, $\left\{B_{j}^{2}\right\}_{j=\overline{0, p_{2}}}, \ldots,\left\{B_{j}^{p_{n_{0}}}\right\}_{j=\overline{0, p_{n_{0}}}}$ be the corresponding partitions satisfying $(*)$.

The partition $P_{\varepsilon}^{A}=\left\{\left(A \backslash \bigcup_{k=1}^{n_{0}} A_{k}\right),\left\{B_{j}^{1}\right\}_{j=\overline{1, p_{1}}}\right.$, $\left.\left\{B_{j}^{2}\right\}_{j=\overline{1, p_{2}}}, \ldots,\left\{B_{j}^{p_{n_{0}}}\right\}_{j=\overline{1, p_{n_{0}}}}\right\} \in \mathcal{P}_{A}$ satisfies $(*)$, so f is $\widetilde{\mu}$-totally-measurable on $A=\bigcup_{n=1}^{\infty} A_{n}$.

Theorem 24 Suppose \mathcal{A} is a σ-algebra, $\mu: \mathcal{A} \rightarrow$ \mathbb{R}_{+}is an o-continuous submeasure of finite variation
and $\left(f_{n}\right)_{n \in \mathbb{N}^{*}}$ is a sequence of uniformly bounded $\widetilde{\mu}$ -totally-measurable functions $f_{n}: T \rightarrow \mathbb{R}$. Then g defined for every $t \in T$ by $g(t)=\inf _{n \in \mathbb{N}^{*}} f_{n}(t)$, is $\widetilde{\mu}$ -totally-measurable.

Proof. One can easily check that for every $t, s \in T$, the following inequality holds:

$$
\begin{equation*}
|g(t)-g(s)| \leq \sup _{n \in \mathbb{N}^{*}}\left|f_{n}(t)-f_{n}(s)\right| \tag{1}
\end{equation*}
$$

Since for every $n \in \mathbb{N}^{*}, f_{n}$ is $\widetilde{\mu}$-totallymeasurable, then for every $\varepsilon>0$, there is a partition $P_{\varepsilon}^{n}=\left\{A_{j}^{n}\right\}_{j=\overline{0, p_{n}}} \in \mathcal{P}$ so that $\bar{\mu}\left(A_{0}^{n}\right)<\frac{\varepsilon}{2^{n+1}}$ and
$\sup _{t, s \in A_{j}^{n}}\left|f_{n}(t)-f_{n}(s)\right|<\frac{\varepsilon}{2^{n+1}}$, for every $j=\overline{1, p_{n}}$.
Let $A_{0}=\bigcup_{n=1}^{\infty} A_{0}^{n} \in \mathcal{A}$. Because μ is an ocontinuous submeasure of finite variation, then, by Remark 4-II, $\bar{\mu}$ is σ-additive on \mathcal{A}, so,

$$
\bar{\mu}\left(A_{0}\right) \leq \sum_{n=1}^{\infty} \bar{\mu}\left(A_{0}^{n}\right)<\sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}}<\frac{\varepsilon}{2} .
$$

On the other hand,

$$
\begin{aligned}
& c A_{0}=\bigcap_{n=1}^{\infty} c A_{0}^{n}=\bigcap_{n=1}^{\infty}\left(A_{1}^{n} \cup A_{2}^{n} \cup \ldots \cup A_{p_{n}}^{n}\right)= \\
& =\left(A_{1}^{1} \cup A_{2}^{1} \cup \ldots \cup A_{p_{1}}^{1}\right) \cap\left(A_{1}^{2} \cup A_{2}^{2} \cup \ldots \cup A_{p_{2}}^{2}\right) \cap \ldots \\
& =\bigcup_{\left(i_{n}\right) \in \prod_{n=1}^{\infty} I_{n}}\left(A_{i_{1}}^{1} \cap A_{i_{2}}^{2} \cap \ldots \cap A_{i_{n}}^{n} \cap \ldots\right),
\end{aligned}
$$

where $I_{n}=\left\{1,2, \ldots, p_{n}\right\}$, for every $n \in \mathbb{N}^{*}$. Denote the last reunion by $\bigcup_{n=1}^{\infty} B_{n}$. Now let $C_{n}=\bigcup_{k=1}^{n} B_{k}$ and $D_{n}=c A_{0} \backslash C_{n}$, for every $n \in \mathbb{N}^{*}$. We observe that $B_{n} \cap B_{m}=\emptyset$ whenever $n \neq m, \bigcup_{n=1}^{\infty} C_{n}=\bigcup_{n=1}^{\infty} B_{n}=$ $c A_{0}$ and $D_{n} \searrow \emptyset$.

Since $\bar{\mu}$ is o-continuous, there is $n_{0}(\varepsilon)=n_{0} \in$ \mathbb{N}^{*} such that $\bar{\mu}\left(c A_{0} \backslash\left(\bigcup_{i=1}^{n_{0}} B_{i}\right)\right)<\frac{\varepsilon}{2}$. Because $\bar{\mu}\left(A_{0}\right)<$ $\frac{\varepsilon}{2}$, we get $\bar{\mu}\left(c\left(\bigcup_{i=1}^{n_{0}} B_{i}\right)\right)<\varepsilon$.

From (1) and (2), we have:

$\forall i \in\left\{1, \ldots, n_{0}\right\}$.
If we now consider the partition $P_{\varepsilon}=$ $\left\{c\left(\bigcup_{i=1}^{n_{0}} B_{i}\right), B_{1}, \ldots, B_{n_{0}}\right\}$, we obtain that g is $\tilde{\mu}$ -totally-measurable.

Corollary 25 Under the assumptions of Theorem 24, the function h defined for every $t \in T$ by $h(t)=$ $\sup _{n \in \mathbb{N}^{*}} f_{n}(t)$, is $\widetilde{\mu}$-totally-measurable. Moreover, sup$n \in \mathbb{N}^{*}$
posing there exists $\lim _{n \rightarrow \infty} f_{n}(t)=f(t)$, for every $t \in$ T, then f is $\widetilde{\mu}$-totally-measurable.

Theorem 26 Suppose (T, ρ) is a compact metric s pace, B is the Borel δ-ring generated by the compact subsets of $T, f: T \rightarrow \mathbb{R}$ is continuous on T and $\mu: \mathcal{B} \rightarrow \mathcal{P}_{f}(X)$ is a finitely purely atomic multisubmeasure. Then f is $\widetilde{\mu}$-totally-measurable on T.

Proof. According to Remark 22, it is sufficient to establish the $\widetilde{\mu}$-totally-measurability of f on an arbitrary, fixed atom A_{0} of μ. Since μ is a multisubmeasure, by [15], there is an unique $a_{0} \in A_{0}$ so that $\mu\left(A_{0} \backslash\left\{a_{0}\right\}\right)=\{0\}$.

Let $\varepsilon>0$. Since f is continuous in a_{0}, there is $\delta_{\varepsilon}>0$ so that for every $t \in A_{0}$, with $\rho\left(t, a_{0}\right)<\delta_{\varepsilon}$, we have $\left|f(t)-f\left(a_{0}\right)\right|<\frac{\varepsilon}{3}$.

Let $B_{\varepsilon}=\left\{t \in A_{0} ; \rho\left(t, a_{0}\right)<\delta_{\varepsilon}\right\}=A_{0} \cap$ $B\left(a_{0}, \delta_{\varepsilon}\right)$, where $B\left(a_{0}, \delta_{\varepsilon}\right)$ is the open ball of center a_{0} and radius δ_{ε}. It results $B_{\varepsilon} \in \mathcal{B}$ and since A_{0} is an atom, we have $\mu\left(B_{\varepsilon}\right)=\{0\}$ or $\mu\left(A_{0} \backslash B_{\varepsilon}\right)=\{0\}$.

If $\mu\left(B_{\varepsilon}\right)=\{0\}$, then since $a_{0} \in B_{\varepsilon}$, we get $\mu\left(\left\{a_{0}\right\}\right)=\{0\}$. But $\mu\left(A_{0} \backslash\left\{a_{0}\right\}\right)=\{0\}$, so $\mu\left(A_{0}\right)=$ $\{0\}$, a contradiction. So, we have $\mu\left(A_{0} \backslash B_{\varepsilon}\right)=\{0\}$. Now, one can easily observe that the partition $P_{A_{0}}=$ $\left\{A_{0} \backslash B_{\varepsilon}, B_{\varepsilon}\right\}$ assures the $\widetilde{\mu}$-totally-measurability of f.

5 Semi-convexity, diffusion, atoms and purely atomicity for a Gould type set-valued integral

In this section, we establish results concerning semiconvexity, diffusion, atoms and purely atomicity for the Gould type set-valued integral introduced and studied in [30].

In what follows, without any special assumptions, we suppose \mathcal{A} is an algebra of subsets of T, X is a Banach space, $\mu: \mathcal{A} \rightarrow \mathcal{P}_{f}(X)$ is a set multifunction of finite variation, with $\mu(\emptyset)=\{0\}$ and $f: T \rightarrow \mathbb{R}$ is a bounded function. We now recall the following notions and results (see [12, 13, 28, 29]).

Remark 27 If $\mu: \mathcal{A} \rightarrow \mathcal{P}_{f}(X)$ is of finite variation, then μ takes its values in $\mathcal{P}_{b f}(X)$.

Definition 28 I) Let $P=\left\{A_{i}\right\}_{i=\overline{1, n}}$ and $P^{\prime}=$ $\left\{B_{j}\right\}_{j=\overline{1, m}}$ be two partitions of $T . P^{\prime}$ is said to be finer than P, denoted $P \leq P^{\prime}$ (or $P^{\prime} \geq P$) if for every $j=\overline{1, m}$, there exists $\bar{i}_{j}=\overline{1, n}$ so that $B_{j} \subseteq A_{i_{j}}$.
II) The common refinement of two partitions $P=$ $\left\{A_{i}\right\}_{i=\overline{1, n}}$ and $P^{\prime}=\left\{B_{j}\right\}_{j=\overline{1, m}}$ is the partition $P \wedge$ $P^{\prime}=\left\{A_{i} \cap B_{j}\right\}_{\substack{i=\overline{1, n} \\ j=\overline{1, m}}}$.

Definition 29 ([30]) For every partition $P=$ $\left\{A_{i}\right\}_{i=\overline{1, n}}$ of T and every $t_{i} \in A_{i}, i=$ $\overline{1, n}$, let $\sigma_{f, \mu}(P)$ (or, if there is no doubt, $\left.\sigma_{f}(P), \sigma_{\mu}(P), \sigma(P)\right) b e:$

$$
\begin{aligned}
\sigma(P) & =\bullet \sum_{i=1}^{n} f\left(t_{i}\right) \mu\left(A_{i}\right) \\
& =\overline{f\left(t_{1}\right) \mu\left(A_{1}\right)+\ldots+f\left(t_{n}\right) \mu\left(A_{n}\right)} .
\end{aligned}
$$

I) f is said to be μ-integrable on (T, \mathcal{A}, μ) if the net $(\sigma(P))_{P \in(\mathcal{P}, \leq)}$ is convergent in $\left(\mathcal{P}_{f}(X), h\right)$, where \mathcal{P} is ordered by the relation $" \leq "$ given in Definition 4.2.

If $(\sigma(P))_{P \in(\mathcal{P}, \leq)}$ is convergent, then its limit is called the integral of f on T with respect to μ, denoted by $\int_{T} f d \mu$.
II) For an arbitrary $B \in \mathcal{A}, f$ is said to be μ integrable on B if the restriction $\left.f\right|_{B}$ of f to B is μ integrable on $\left(B, \mathcal{A}_{B}, \mu_{B}\right)$.

Remark 30 I) f is μ-integrable on T if and only if there exists a set $I \in \mathcal{P}_{b f}(X)$ such that for every $\varepsilon>$ 0 , there exists a partition P_{ε} of T, so that for every other partition of $T, P=\left\{A_{i}\right\}_{i=\overline{1, n}}$, with $P \geq P_{\varepsilon}$ and every choice of points $t_{i} \in A_{i}, i=\overline{1, n}$, we have $h(\sigma(P), I)<\varepsilon$.
II) If μ is a multimeasure (multisubmeasure, submeasure, monotone set multifunction, respectively), we obtain the corresponding definitions of $[28,12,17$, 29], respectively).
III) If μ is a multimeasure and $f=1$, then $\int_{T} f d \mu=\mu(T)$.
IV) If $\mu: \mathcal{A} \rightarrow \mathcal{P}_{k c}(X)$, then $\int_{T} f d \mu \in \mathcal{P}_{k c}(X)$.
V) Suppose $m: \mathcal{A} \rightarrow \mathbb{R}_{+}$is an arbitrary set function of finite variation with $m(\emptyset)=0$ and consider the set multifunction $\mu: \mathcal{A} \rightarrow \mathcal{P}_{f}(\mathbb{R})$ defined by $\mu(A)=\{m(A)\}$, for every $A \in \mathcal{A}$. Then, by $I), f$ is m-integrable on T if and only if there is $I \in \mathbb{R}$ such that for every $\varepsilon>0$, there exists a partition P_{ε} of T, so that for every other partition of $T, P=\left\{A_{i}\right\}_{i=\overline{1, n}}$, with $P \geq P_{\varepsilon}$ and every choice of points $t_{i} \in A_{i}, i=$ $\overline{1, n}$, we have $|\sigma(P)-I|=\left|\sum_{i=1}^{n} f\left(t_{i}\right) m\left(A_{i}\right)-I\right|<\varepsilon$. Here, $I=\int_{T} f d m$.

Moreover, if m is finitely additive and $f=1$, then $\int_{T} f d m=m(T)$.
VI) Our integral, if it exists, is unique and has the following properties: homogeneity and additivity with
respect to the function f and the set multifunction μ, additivity with respect to the set, monotonicity with respect to the function f, to the set multifunction μ, and to the set (see [28]-[30] for details. The assumption of monotonicity is not necessary in [29], as observed in [30]).
VII) Let $m: \mathcal{A} \rightarrow[0,1]$ be a submeasure of $f i-$ nite variation. One can easily check that the set function $m_{1}: \mathcal{A} \rightarrow[0,1]$ defined for every $A \in \mathcal{A}$ by $m_{1}(A)=\sin m(A)$ is also a submeasure of finite variation (since $\overline{m_{1}}(A) \leq \bar{m}(A)$, for every $A \subseteq T$). Suppose $f: T \rightarrow \mathbb{R}$ is bounded. Since, according to [17], m-integrability of f is equivalent to its \widetilde{m} -totally-measurability and because $\frac{2}{\pi} t \leq \sin t \leq t$, for every $t \in\left[0, \frac{\pi}{2}\right)$, then f is m-integrable if and only if f is m_{1}-integrable.

Theorem 31 I) Let $f: T \rightarrow \mathbb{R}$ be a μ-integrable function. Then

$$
\left|\int_{T} f d \mu\right| \leq \sup _{t \in T}|f(t)| \cdot \bar{\mu}(T)
$$

II) Let $f: T \rightarrow \mathbb{R}$ and $A, B \in \mathcal{A}$, with $A \cap B=\emptyset$. If f is μ-integrable on A and μ-integrable on B, then f is μ-integrable on $A \cup B$ and $\int_{A \cup B} f d \mu=\int_{A} f d \mu+$ $\int_{B} f d \mu$.
III) Suppose $\mu: \mathcal{A} \rightarrow \mathcal{P}_{k c}(X)$. If $f: T \rightarrow \mathbb{R}$ is μ-integrable on T, then f is μ-integrable on every $B \in \mathcal{A}$.
IV) If $f: T \rightarrow \mathbb{R}$ is μ-integrable on every $A \in \mathcal{A}$, then the set multifunction $M: \mathcal{A} \rightarrow \mathcal{P}_{f}(X)$, defined by

$$
(* *) M(A)=\int_{A} f d \mu, \text { for every } A \in \mathcal{A}
$$

is a monotone multimeasure, $M \ll \mu$ and M is strongly absolutely continuous with respect to μ.
V) If $f, g: T \rightarrow \mathbb{R}$ are bounded functions so that f is μ-integrable on T and $f=g \mu$-a.e, then g is μ-integrable on T and $\int_{T} f d \mu=\int_{T} g d \mu$.

Remark 32 By Theorem 31-I and Remark 10-III), we immediately get that if $\mu: \mathcal{A} \rightarrow \mathcal{P}_{k c}(X)$ is diffused, then the same is M defined in $(* *)$. Also, by Remark 30-I, if $\inf _{t \in T} f(t)>0$, then the converse is also valid. So, in this case, μ is diffused if and only if the same is M.

Proposition 33 Let $m_{1}, m_{2}: \mathcal{A} \rightarrow \mathbb{R}_{+}$be set functions of finite variation, so that $m_{1} \leq m_{2}$ and $m_{1}(\emptyset)=m_{2}(\emptyset)=0, f: T \rightarrow \overline{\mathbb{R}}$ and $\mu:$ $\mathcal{A} \rightarrow \mathcal{P}_{k c}(\mathbb{R})$ the set multifunction defined by $\mu(A)=$
$\left[m_{1}(A), m_{2}(A)\right]$, for every $A \in \mathcal{A}$. Then f is μ integrable on T if and only if f is m_{1}-integrable on T and m_{2}-integrable on T and, in this case,

$$
\int_{T} f d \mu=\left[\int_{T} f d m_{1}, \int_{T} f d m_{2}\right]
$$

Proof. f is m_{1}-integrable on T and m_{2}-integrable on T if and only if for every $\varepsilon>0$, there exists a partition P_{ε} of T so that for every other partitions of $T, P^{\prime}=$ $\left\{A_{i}\right\}_{i=\overline{1, n}}, P^{\prime \prime}=\left\{B_{j}\right\}_{j=\overline{1, p}}$, so that $P^{\prime} \geq P_{\varepsilon}, P^{\prime \prime} \geq$ P_{ε} and every $t_{i} \in A_{i}, i=\overline{1, n}, s_{j} \in B_{j}, j=\overline{1, p}$, we have

$$
\left|\sum_{i=1}^{n} f\left(t_{i}\right) m_{k}\left(A_{i}\right)-\sum_{j=1}^{p} f\left(s_{j}\right) m_{k}\left(B_{j}\right)\right|<\varepsilon, \quad k=1,2 .
$$

Since

$$
\begin{aligned}
& h\left(\sum_{i=1}^{n} f\left(t_{i}\right) \mu\left(A_{i}\right), \sum_{j=1}^{p} f\left(s_{j}\right) \mu\left(B_{j}\right)\right)= \\
& =h\left(\left[\sum_{i=1}^{n} f\left(t_{i}\right) m_{1}\left(A_{i}\right), \sum_{i=1}^{n} f\left(t_{i}\right) m_{2}\left(A_{i}\right)\right],\right. \\
& \left.\left[\sum_{j=1}^{p} f\left(s_{j}\right) m_{1}\left(B_{j}\right), \sum_{j=1}^{p} f\left(s_{j}\right) m_{2}\left(B_{j}\right)\right]\right) \\
& =\max \left\{\left|\sum_{i=1}^{n} f\left(t_{i}\right) m_{1}\left(A_{i}\right)-\sum_{j=1}^{p} f\left(s_{j}\right) m_{1}\left(B_{j}\right)\right|,\right. \\
& \left.\left|\sum_{i=1}^{n} f\left(t_{i}\right) m_{2}\left(A_{i}\right)-\sum_{j=1}^{p} f\left(s_{j}\right) m_{2}\left(B_{j}\right)\right|\right\},
\end{aligned}
$$

it follows that for every $\varepsilon>0$, there exists a partition P_{ε} of T so that for every other partitions of $T, P^{\prime}=$ $\left\{A_{i}\right\}_{i=\overline{1, n}}, P^{\prime \prime}=\left\{B_{j}\right\}_{j=\overline{1, p}}$, so that $P^{\prime} \geq P_{\varepsilon}, P^{\prime \prime} \geq$ P_{ε} and every $t_{i} \in A_{i}, i=\overline{1, n}, s_{j} \in B_{j}, j=\overline{1, p}$, we have

$$
h\left(\sum_{i=1}^{n} f\left(t_{i}\right) \mu\left(A_{i}\right), \sum_{j=1}^{p} f\left(s_{j}\right) \mu\left(B_{j}\right)\right)<\varepsilon,
$$

which means that f is μ-integrable on T.
Now, let us prove that $\int_{T} f d \mu=$ $\left[\int_{T} f d m_{1}, \int_{T} f d m_{2}\right]$.

Since f is μ-integrable on T, m_{1}-integrable on T and m_{2}-integrable on T, it results that for every $\varepsilon>0$, there exists a partition $\left\{C_{k}\right\}_{k=\overline{1, l}}$ of T so that for every
$s_{k} \in C_{k}, k=\overline{1, l}$, we have

$$
\begin{aligned}
& h\left(\int_{T} f d \mu, \sum_{k=1}^{l} f\left(s_{k}\right) \mu\left(C_{k}\right)\right)<\frac{\varepsilon}{2} \text { and } \\
& \left|\int_{T} f d m_{i}-\sum_{k=1}^{l} f\left(s_{k}\right) m_{i}\left(C_{k}\right)\right|<\frac{\varepsilon}{2}, i=1,2
\end{aligned}
$$

Then

$$
\begin{aligned}
& h\left(\int_{T} f d \mu,\left[\int_{T} f d m_{1}, \int_{T} f d m_{2}\right]\right) \leq \\
& \leq h\left(\int_{T} f d \mu, \sum_{k=1}^{l} f\left(s_{k}\right) \mu\left(C_{k}\right)\right) \\
& +h\left(\sum_{k=1}^{l} f\left(s_{k}\right) \mu\left(C_{k}\right),\left[\int_{T} f d m_{1}, \int_{T} f d m_{2}\right]\right)= \\
& =h\left(\int_{T} f d \mu, \sum_{k=1}^{l} f\left(s_{k}\right) \mu\left(C_{k}\right)\right) \\
& +\max \left\{\left|\int_{T} f d m_{1}-\sum_{k=1}^{l} f\left(s_{k}\right) m_{1}\left(C_{k}\right)\right|\right. \\
& \left.\left|\int_{T} f d m_{2}-\sum_{k=1}^{l} f\left(s_{k}\right) m_{2}\left(C_{k}\right)\right|\right\}<\varepsilon,
\end{aligned}
$$

for every $\varepsilon>0$ and this implies $\int_{T} f d \mu=$ $\left[\int_{T} f d m_{1}, \int_{T} f d m_{2}\right]$.

Taking $m_{1}=0$ in Proposition 33, we obtain the following result.

Corollary 34 Let $m: \mathcal{A} \rightarrow \mathbb{R}_{+}$be a set function of finite variation with $m(\emptyset)=0, \mu: \mathcal{C} \rightarrow \mathcal{P}_{k c}(\mathbb{R})$ the set multifunction defined by $\mu(A)=[0, m(A)]$, for every $A \in \mathcal{C}$ and $f: T \rightarrow \mathbb{R}$. Then f is μ-integrable on T if and only if f is m-integrable on T and, in this case,

$$
\int_{T} f d \mu=\left[0, \int_{T} f d m\right]
$$

Theorem 35 Let $\mu: \mathcal{A} \rightarrow \mathcal{P}_{k c}(X)$ be a semi-convex multimeasure and $f: T \rightarrow \mathbb{R}$ a $\widetilde{\mu}$-totally-measurable bounded function on T. Then M defined in $(* *)$ is also semi-convex.

Proof. The following statements, even they are established for T, remain valid for any arbitrary set $A \in \mathcal{A}$. Also, according to [28], f is μ-integrable on T and on every $A \in \mathcal{A}$. Consider arbitrary $\varepsilon>0$ and let $M=\max \left\{\bar{\mu}(T), \sup _{t \in T}|f(t)|\right\}$.

By the μ-integrability of f on T, there is a partition $\left\{A_{i}\right\}_{i=\overline{1, n}}$ of T such that for every $s_{i} \in A_{i}$,
$i=\overline{1, n}$, we have $h\left(\int_{T} f d \mu, \sum_{i=1}^{n} f\left(s_{i}\right) \mu\left(A_{i}\right)\right)<\frac{2 \varepsilon}{3}$, so $h\left(\frac{1}{2} \int_{T} f d \mu, \sum_{i=1}^{n} f\left(s_{i}\right) \frac{1}{2} \mu\left(A_{i}\right)\right)<\frac{\varepsilon}{3}$.

Because μ is semi-convex, for every $i=\overline{1, n}$, there is $B_{i} \subset A_{i}$ so that $B_{i} \in \mathcal{A}$ and $\mu\left(B_{i}\right)=\frac{1}{2} \mu\left(A_{i}\right)$, which implies $h\left(\frac{1}{2} \int_{T} f d \mu, \sum_{i=1}^{n} f\left(s_{i}\right) \mu\left(B_{i}\right)\right)<\frac{\varepsilon}{3}$.

Since f is μ-integrable on $B=\bigcup_{i=1}^{n} B_{i}$, there exists a partition $\widetilde{P}_{\varepsilon}^{B}=\left\{D_{k}\right\}_{k=\overline{1, s}} \in \mathcal{P}_{B}$ so that for every partition $P \in \mathcal{P}_{B}$, with $P \geq \widetilde{P}_{\varepsilon}^{B}$, we have $h\left(\int_{B} f d \mu, \sigma(P)\right)<\frac{\varepsilon}{3}$.

On the other hand, because f is $\widetilde{\mu}$-totallymeasurable on B, there is a partition $\widetilde{\widetilde{P}}_{\varepsilon}^{B}=$ $\left\{E_{l}\right\}_{l=\overline{0, m}} \in \mathcal{P}_{B}$ such that $\bar{\mu}\left(E_{0}\right)<\frac{\varepsilon}{12 M}$ and $\sup _{t, s \in E_{l}}|f(t)-f(s)|<\frac{\varepsilon}{6 M}$, for every $l=\overline{1, m}$.

Consider $\left\{D_{k} \cap E_{l}\right\}_{k=\overline{1, s}, l=\overline{0, m}} \in \mathcal{P}_{B}$ and denote it by $\left\{C_{j}\right\}_{j=\overline{1, q}}$. For instance, $C_{1}=D_{1} \cap E_{0}, C_{2}=$ $D_{2} \cap E_{0}, \ldots, C_{s}=D_{s} \cap E_{0}, C_{s+1}=D_{1} \cap E_{1}$ etc. We observe that
$\bar{\mu}\left(\bigcup_{j=1}^{s} C_{j}\right)=\bar{\mu}\left(E_{0}\right)<\frac{\varepsilon}{12 M}$ and
$\sup _{t_{j}, s_{j} \in C_{j}}\left|f\left(t_{j}\right)-f\left(s_{j}\right)\right|<\frac{\varepsilon}{6 M}$, for every $j=\overline{s+1, q}$.
Let $P_{\varepsilon}^{B}=\left\{B_{i} \cap C_{j}\right\}_{i=\overline{1, n}, j=\overline{1, q}} \in \mathcal{P}_{B}$. Since $P_{\varepsilon}^{B} \geq \widetilde{P}_{\varepsilon}^{B}$, then $h\left(\int_{B} f d \mu, \sigma\left(P_{\varepsilon}^{B}\right)\right)<\frac{\varepsilon}{3}$.

Now, we have:

$$
\begin{aligned}
& h\left(\frac{1}{2} \int_{T} f d \mu, \int_{B} f d \mu\right) \leq h\left(\frac{1}{2} \int_{T} f d \mu, \sum_{i=1}^{n} f\left(s_{i}\right) \mu\left(B_{i}\right)\right) \\
& +h\left(\int_{B} f d \mu, \sigma\left(P_{\varepsilon}^{B}\right)\right)+ \\
& +h\left(\sigma\left(P_{\varepsilon}^{B}\right), \sum_{i=1}^{n} f\left(s_{i}\right) \mu\left(B_{i}\right)\right)<\frac{2 \varepsilon}{3} \\
& +h\left(\sigma\left(P_{\varepsilon}^{B}\right), \sum_{i=1}^{n} f\left(s_{i}\right) \mu\left(B_{i}\right)\right)
\end{aligned}
$$

It only remains to prove that for every $\theta_{i j} \in B_{i} \cap$ $C_{j}, i=\overline{1, n}, j=\overline{1, q}$,
$h\left(\sigma\left(P_{\varepsilon}^{B}\right), \sum_{i=1}^{n} f\left(s_{i}\right) \mu\left(B_{i}\right)\right)$
$=h\left(\sum_{i=1}^{n} \sum_{j=1}^{q} f\left(\theta_{i j}\right) \mu\left(B_{i} \cap C_{j}\right), \sum_{i=1}^{n} f\left(s_{i}\right) \mu\left(B_{i}\right)\right)<\frac{\varepsilon}{3}$.

Indeed, we have:

$$
\begin{aligned}
& h\left(\sum_{i=1}^{n} \sum_{j=1}^{q} f\left(\theta_{i j}\right) \mu\left(B_{i} \cap C_{j}\right), \sum_{i=1}^{n} f\left(s_{i}\right) \mu\left(B_{i}\right)\right)= \\
& =h\left(\sum_{i=1}^{n} \sum_{j=1}^{q} f\left(\theta_{i j}\right) \mu\left(B_{i} \cap C_{j}\right),\right. \\
& \left.\quad \sum_{i=1}^{n} \sum_{j=1}^{q} f\left(s_{i}\right) \mu\left(B_{i} \cap C_{j}\right)\right) \leq \\
& \leq \sum_{i=1}^{n} \sum_{j=1}^{q}\left|f\left(s_{i}\right)-f\left(\theta_{i j}\right)\right| \cdot\left|\mu\left(B_{i} \cap C_{j}\right)\right|= \\
& =\sum_{i=1}^{n} \sum_{j=1}^{s}\left|f\left(s_{i}\right)-f\left(\theta_{i j}\right)\right| \cdot\left|\mu\left(B_{i} \cap C_{j}\right)\right|+ \\
& +\sum_{i=1}^{n} \sum_{j=s+1}^{q}\left|f\left(s_{i}\right)-f\left(\theta_{i j}\right)\right| \cdot\left|\mu\left(B_{i} \cap C_{j}\right)\right| \leq \\
& \leq 2 M \sum_{j=1}^{s} \bar{\mu}\left(C_{j}\right)+\sum_{j=s+1}^{q}\left|f\left(s_{i}\right)-f\left(\theta_{i j}\right)\right| \cdot \bar{\mu}\left(C_{j}\right)< \\
& <2 M \bar{\mu}\left(\cup_{j=1}^{s} C_{j}\right)+\frac{\varepsilon}{6 M} \bar{\mu}(\underbrace{q}_{j=s+1} C_{j}) \\
& <2 M \frac{\varepsilon}{12 M}+\frac{\varepsilon}{6 M} M=\frac{\varepsilon}{3} .
\end{aligned}
$$

Consequently, $h\left(\frac{1}{2} \int_{T} f d \mu, \int_{B} f d \mu\right)<\varepsilon$, for every $\varepsilon>0$, so $\frac{1}{2} \int_{T} f d \mu=\int_{B} f d \mu$. Therefore, M is semi-convex.

Theorem 36 Suppose $\mu: \mathcal{A} \rightarrow \mathcal{P}_{f}(X)$ is monotone, null-additive and finitely purely atomic. If f is $\widetilde{\mu}$ -totally-measurable on T, then f is μ-integrable on T.

Proof. According to Theorem 31-II, it will be sufficient to prove that f is μ-integrable on every atom A of μ. First, we observe that, if A is an atom of μ and if $\left\{A_{i}\right\}_{i=\overline{1, n}} \in \mathcal{P}_{A}$, then, there exists only one set, for instance, without any loss of generality, A_{1}, so that $\mu\left(A_{1}\right) \supsetneq\{0\}$ and $\mu\left(A_{2}\right)=\ldots=\mu\left(A_{n}\right)=\{0\}$.

Let $A \in \mathcal{A}$ be an atom of μ.
Since f is $\widetilde{\mu}$-totally-measurable on A, then for every $\varepsilon>0$ there exists a partition $P_{\varepsilon}=\left\{A_{i}\right\}_{i=\overline{0, n}}$ of A such that:
$(*)\left\{\begin{array}{l}i) \widetilde{\mu}\left(A_{0}\right)<\frac{\varepsilon}{2 M}\left(\text { where } M=\sup _{t \in T}|f(t)|\right) \text { and } \\ i i) \sup _{t, s \in A_{i}}|f(t)-f(s)|<\frac{\varepsilon}{\bar{\mu}(T)}, \text { for every } i=\overline{1, n} .\end{array}\right.$
Let $\left\{B_{j}\right\}_{j=\overline{1, k}},\left\{C_{p}\right\}_{p=\overline{1, s}} \in \mathcal{P}_{A}$ be two arbitrary partitions which are finer than P_{ε} and consider $s_{j} \in$ $B_{j}, j=\overline{1, k}, \theta_{p} \in C_{p}, p=\overline{1, s}$.

We prove that

$$
h\left(\sum_{j=1}^{k} f\left(s_{j}\right) \mu\left(B_{j}\right), \cdot \sum_{p=1}^{s} f\left(\theta_{p}\right) \mu\left(C_{p}\right)\right)<\varepsilon .
$$

We have two cases:
I. $\mu\left(A_{0}\right) \nsupseteq\{0\}$. Then $\mu\left(A_{1}\right)=\ldots=\mu\left(A_{n}\right)=$ $\{0\}$.

Suppose, without any loss of generality that $\mu\left(B_{1}\right) \supsetneq\{0\}, \mu\left(C_{1}\right) \supsetneq\{0\}$ and $\mu\left(B_{2}\right)=\ldots=$ $\mu\left(B_{k}\right)=\{0\}, \mu\left(C_{2}\right)=\ldots=\mu\left(C_{s}\right)=\{0\}$. Then $B_{1} \subset A_{0}$ and $C_{1} \subset A_{0}$. Consequently,

$$
\begin{aligned}
& h\left(\sum_{j=1}^{k} f\left(s_{j}\right) \mu\left(B_{j}\right), \cdot \sum_{p=1}^{s} f\left(\theta_{p}\right) \mu\left(C_{p}\right)\right) \\
& =h\left(f\left(s_{1}\right) \mu\left(B_{1}\right), f\left(\theta_{1}\right) \mu\left(C_{1}\right)\right) \leq \\
& \leq\left|f\left(s_{1}\right)\right|\left|\mu\left(B_{1}\right)\right|+\left|f\left(\theta_{1}\right)\right|\left|\mu\left(C_{1}\right)\right| \leq \\
& \leq 2 M \bar{\mu}\left(A_{0}\right)<\varepsilon .
\end{aligned}
$$

II. $\mu\left(A_{0}\right)=\{0\}$. Then, without any loss of generality, $\mu\left(A_{1}\right) \supseteq\{0\}$ and $\mu\left(A_{i}\right)=\{0\}$, for every $i=\overline{2, n}$. Suppose that $\mu\left(B_{1}\right) \nsupseteq\{0\}, \mu\left(C_{1}\right) \nsupseteq\{0\}$ and $\mu\left(B_{2}\right)=\ldots=\mu\left(B_{k}\right)=\{0\}, \mu\left(C_{2}\right)=\ldots=$ $\mu\left(C_{s}\right)=\{0\}$. Then $B_{1} \subset A_{1}$ and $C_{1} \subset A_{1}$, and, therefore,

$$
\begin{aligned}
& h\left(\sum_{j=1}^{k} f\left(s_{j}\right) \mu\left(B_{j}\right), \cdot \sum_{p=1}^{s} f\left(\theta_{p}\right) \mu\left(C_{p}\right)\right) \\
& =h\left(f\left(s_{1}\right) \mu\left(B_{1}\right), f\left(\theta_{1}\right) \mu\left(C_{1}\right)\right) .
\end{aligned}
$$

Since A is an atom of μ and $\mu\left(B_{1}\right) \supsetneq\{0\}$, then $\mu\left(A \backslash B_{1}\right)=\{0\}$, so $\mu\left(C_{1} \backslash B_{1}\right)=\{0\}$. By the nulladditivity of μ, we get $\mu\left(C_{1}\right)=\mu\left(B_{1}\right)$. Then

$$
\begin{aligned}
& h\left(\sum_{j=1}^{k} f\left(s_{j}\right) \mu\left(B_{j}\right), \sum_{p=1}^{s} f\left(\theta_{p}\right) \mu\left(C_{p}\right)\right) \\
& =h\left(f\left(s_{1}\right) \mu\left(B_{1}\right), f\left(\theta_{1}\right) \mu\left(C_{1}\right)\right) \\
& =h\left(f\left(s_{1}\right) \mu\left(B_{1}\right), f\left(\theta_{1}\right) \mu\left(B_{1}\right)\right) .
\end{aligned}
$$

By Proposition 1, we have

$$
\begin{aligned}
& h\left(\sum_{j=1}^{k} f\left(s_{j}\right) \mu\left(B_{j}\right), \cdot \sum_{p=1}^{s} f\left(\theta_{p}\right) \mu\left(C_{p}\right)\right) \\
& \leq\left|\mu\left(B_{1}\right)\right|\left|f\left(s_{1}\right)-f\left(\theta_{1}\right)\right| \leq \bar{\mu}(T) \frac{\varepsilon}{\bar{\mu}(T)}=\varepsilon
\end{aligned}
$$

Therefore, the net $(\sigma(P))_{P \in \mathcal{P}_{A}}$ is a Cauchy one in the complete metric space $\left(\mathcal{P}_{b f}(X), h\right)$, hence f is μ integrable on A.

In [8, 9], submeasures of the following type are studied. Here, we investigate the relationship between their Gould integrals.

Theorem 37 Let $\left(m_{n}\right)_{n \in \mathbb{N}}$ be an uniformly bounded sequence of submeasures of finite variation, m_{n} : $\mathcal{A} \rightarrow \mathbb{R}_{+}, \forall n \in \mathbb{N}$ and $m: \mathcal{A} \rightarrow \mathbb{R}_{+}$defined by $m(A)=\sup _{n} m_{n}(A)$, for every $A \in \mathcal{A}$.

Suppose $A_{0} \in \mathcal{A}$ is an atom of m and $f: T \rightarrow$ \mathbb{R} is \widetilde{m}-totally-measurable on T. Then $\int_{A_{0}} f d m=$ $\sup _{n} \int_{A_{0}} f d m_{n}$.

Proof. By Example 3-II), m is a submeasure too. Since $\bar{m}_{n}(A) \leq \bar{m}(A)$, for every $A \in \mathcal{A}$, then for every $n \in \mathbb{N}, f$ is \widetilde{m}_{n}-totally-measurable on T. According to [17], f is m-integrable and m_{n}-integrable on T and on every $A \in \mathcal{A}$. By [17], $\int_{A_{0}} f d m_{n} \leq \int_{A_{0}} f d m$, for every $n \in \mathbb{N}$.

Since $m\left(A_{0}\right)=\sup m_{n}\left(A_{0}\right)$, we get that for every $\varepsilon>0$, there is $n_{0}\left(\varepsilon, A_{0}\right)=n_{0}$ so that $m\left(A_{0}\right)<$ $m_{n_{0}}\left(A_{0}\right)+\frac{\varepsilon}{2 M}$, where $M=\sup _{t \in T}|f(t)|$.

Because f is m-integrable and $m_{n_{0}}$-integrable on A_{0}, we have that for every $\varepsilon>0$, there is a common partition $\left\{B_{j}\right\}_{j=\overline{1, k}} \in \mathcal{P}_{A_{0}}$ so that for every $t_{j} \in B_{j}$, $\left|\int_{A_{0}} f d m-\sum_{j=1}^{k} f\left(t_{j}\right) m\left(B_{j}\right)\right|<\frac{\varepsilon}{4}$ and $\mid \int_{A_{0}} f d m_{n_{0}}-$ $\sum_{j=1}^{k} f\left(t_{j}\right) m_{n_{0}}\left(B_{j}\right) \left\lvert\,<\frac{\varepsilon}{4}\right.$.

Since $\left\{B_{j}\right\}_{j=\overline{1, k}} \in \mathcal{P}_{A_{0}}$, we observe that there can exist only one set, for instance, B_{1}, so that $m\left(B_{1}\right)>0$ and $m\left(B_{j}\right)=0$, for every $j=\overline{2, k}$. Then $m_{n_{0}}\left(B_{j}\right)=0$, for every $j=\overline{2, k}$.

Consequently, because $m\left(B_{1}\right)=m\left(A_{0}\right)$ and $m_{n_{0}}\left(B_{1}\right)=m_{n_{0}}\left(A_{0}\right)$, we have

$$
\begin{aligned}
& \int_{A_{0}} f d m \leq\left|\int_{A_{0}} f d m-\sum_{j=1}^{k} f\left(t_{j}\right) m\left(B_{j}\right)\right| \\
& +\left|\int_{A_{0}} f d m_{n_{0}}-\sum_{j=1}^{k} f\left(t_{j}\right) m_{n_{0}}\left(B_{j}\right)\right| \\
& +\left|f\left(t_{1}\right)\right| \cdot\left|m\left(B_{1}\right)-m_{n_{0}}\left(B_{1}\right)\right| \\
& +\int_{A_{0}} f d m_{n_{0}}<\frac{\varepsilon}{2}+M \frac{\varepsilon}{2 M}+\int_{A_{0}} f d m_{n_{0}}= \\
& =\varepsilon+\int_{A_{0}} f d m_{n_{0}}
\end{aligned}
$$

so $\int_{A_{0}} f d m=\sup _{n} \int_{A_{0}} f d m_{n}$, as claimed.

6 Classical results for the Gould type set-valued integral

In this section we obtain some classical theorems (such as Hölder inequality, Minkowski inequality,
mean convergence theorem, Lebesgue theorem, Fatou lemma) for the Gould type set-valued integral introduced in [30].

Theorem 38 (Hölder Inequality) Let $m: \mathcal{A} \rightarrow \mathbb{R}_{+}$ be a submeasure of finite variation and $f, g: T \rightarrow \mathbb{R}$ m-integrable bounded functions on T. Then

$$
\int_{T}|f g| d m \leq\left(\int_{T}|f|^{p} d m\right)^{\frac{1}{p}} \cdot\left(\int_{T}|g|^{q} d m\right)^{\frac{1}{q}}
$$

for every $p, q \in(1, \infty)$, with $\frac{1}{p}+\frac{1}{q}=1$.
Proof. Since (see [17]) for submeasures, m integrability is equivalent to \widetilde{m}-totally-measurability, then by Theorem 19-I and Theorem 2.17 [17], $|f|,|g|$, $|f g|,|f|^{p}$ and $|g|^{q}$ are also m-integrable, so, for every $\varepsilon>0$, there is a common partition $P_{\varepsilon}=\left\{A_{i}\right\}_{i=\overline{1 . n}}$ such that for every $t_{i} \in A_{i}, i=\overline{1, n}$, we have:

$$
\begin{aligned}
& \left|\int_{T}\right| f g\left|d m-\sum_{i=1}^{n}\right| f\left(t_{i}\right) g\left(t_{i}\right)\left|m\left(A_{i}\right)\right|<\frac{\varepsilon}{3} \\
& \left|\int_{T}\right| f\left|d m-\sum_{i=1}^{n}\right| f\left(t_{i}\right)\left|m\left(A_{i}\right)\right|<\frac{\varepsilon}{3} \text { and } \\
& \left|\int_{T}\right| g\left|d m-\sum_{i=1}^{n}\right| g\left(t_{i}\right)\left|m\left(A_{i}\right)\right|<\frac{\varepsilon}{3}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|f\left(t_{i}\right) g\left(t_{i}\right)\right| m\left(A_{i}\right) \\
& =\sum_{i=1}^{n}\left[\left|f\left(t_{i}\right)\right|\left(m\left(A_{i}\right)\right)^{\frac{1}{p}} \cdot\left|g\left(t_{i}\right)\right|\left(m\left(A_{i}\right)\right)^{\frac{1}{q}}\right] \leq \\
& \leq\left(\sum_{i=1}^{n}\left|f\left(t_{i}\right)\right|^{p} m\left(A_{i}\right)\right)^{\frac{1}{p}} \cdot\left(\sum_{i=1}^{n}\left|g\left(t_{i}\right)\right|^{q} m\left(A_{i}\right)\right)^{\frac{1}{q}}
\end{aligned}
$$

we immediately have the conclusion.
Using the above theorem, we obtain the Minkowski inequality, by a classical proof.

Theorem 39 (Minkowski inequality) Let $m: \mathcal{A} \rightarrow$ \mathbb{R}_{+}be a submeasure of finite variation and $f, g: T \rightarrow$ $\mathbb{R} m$-integrable bounded functions on T. Then

$$
\left(\int_{T}|f+g|^{p} d m\right)^{\frac{1}{p}} \leq\left(\int_{T}|f|^{p} d m\right)^{\frac{1}{p}}+\left(\int_{T}|g|^{p} d m\right)^{\frac{1}{p}}
$$

for every $p \in[1,+\infty)$.
If $m: \mathcal{A} \rightarrow \mathbb{R}_{+}$is a submeasure of finite variation, we consider the space $\mathcal{L}^{p}=\{f: T \rightarrow \mathbb{R} ; f$ is bounded on T and $|f|^{p}$ is m-integrable on $\left.T\right\}$.

Remark 40 From Theorem 19-II, it results that if $f, g \in \mathcal{L}^{p}$, then $f+g \in \mathcal{L}^{p}$. So, \mathcal{L}^{p} is a linear s pace.

Corollary 41 Let $m: \mathcal{A} \rightarrow \mathbb{R}_{+}$be a submeasure of finite variation and $p \in[1,+\infty)$. Then the function $\|\cdot\|: \mathcal{L}^{p} \rightarrow \mathbb{R}_{+}$, defined for every $f \in \mathcal{L}^{p}$ by $\|f\|=$ $\left(\int_{T}|f|^{p} d m\right)^{\frac{1}{p}}$, is a semi-norm.

Definition 42 Let $\mu: \mathcal{A} \rightarrow \mathcal{P}_{f}(X)$ be a set multifunction with $\mu(\emptyset)=\{0\}$. If for every $n \in \mathbb{N}$, $f_{n}: T \rightarrow \mathbb{R}$ is μ-integrable on T, then the sequence $\left(f_{n}\right)$ is said to be mean convergent to f on T if $\lim _{n \rightarrow \infty} \int_{T}\left(f_{n}-f\right) d \mu=\{0\}$ (with respect to h).

Theorem 43 (Mean Convergence Theorem) Let μ : $\mathcal{A} \rightarrow \mathcal{P}_{k c}(X)$ be a set multifunction of finite variation, with $\mu(\emptyset)=\{0\}$ and $f_{n}: T \rightarrow \mathbb{R}$, for every $n \in \mathbb{N}$. Suppose $\left(f_{n}\right)$ is an uniformly bounded sequence of μ-integrable functions such that $\left(f_{n}\right)$ is convergent in submeasure to a bounded function $f: T \rightarrow \mathbb{R}$. Then f is μ-integrable on T and on every $A \in \mathcal{A}$,

$$
\lim _{n \rightarrow \infty} \int_{A}\left(f_{n}-f\right) d \mu=\{0\}
$$

(with respect to h)
Proof. Let $M^{\prime}=\bar{\mu}(T), M_{1}=\sup _{t \in T}|f(t)|, M_{2}=$ $\sup _{t \in T, n \in \mathbb{N}}\left|f_{n}(t)\right|$ and $M=\max \left\{M_{1}, M_{2}\right\}$.

Since $f_{n} \xrightarrow{\widetilde{\mu}} f$, it results that for every $\varepsilon>0$, there exists $n_{0}(\varepsilon) \in \mathbb{N}$ so that $\widetilde{\mu}\left(B_{n}\left(\frac{\varepsilon}{6 M^{\prime}}\right)\right)<\frac{\varepsilon}{4 M}$, for every $n \geq n_{0}$.

Particularly, $\widetilde{\mu}\left(B_{n_{0}}\left(\frac{\varepsilon}{6 M^{\prime}}\right)\right)<\frac{\varepsilon}{4 M}$. By the definition of $\widetilde{\mu}$, there is $C_{n_{0}} \in \mathcal{A}$ so that $B_{n_{0}}\left(\frac{\varepsilon}{6 M^{\prime}}\right) \subseteq C_{n_{0}}$ and $\widetilde{\mu}\left(C_{n_{0}}\right)=\bar{\mu}\left(C_{n_{0}}\right)<\frac{\varepsilon}{4 M}$.

First, we prove that f is μ-integrable on $C_{n_{0}}$. Indeed, for every $\varepsilon>0$, there is a partition $P_{\varepsilon}=$ $\left\{C_{n_{0}}\right\} \in \mathcal{P}_{C_{n_{0}}}$ so that, for every other partition $P=\left\{D_{l}\right\}_{l=\overline{1, p}} \in \mathcal{P}_{C_{n_{0}}}$, with $P \geq P_{\varepsilon}$ and every $t_{l} \in D_{l}, l=\overline{1, p}$ and $c \in C_{n_{0}}$, we have:

$$
\begin{aligned}
& h\left(\sum_{l=1}^{p} f\left(t_{l}\right) \mu\left(D_{l}\right), f(c) \mu\left(C_{n_{0}}\right)\right) \\
& \leq \sum_{l=1}^{p}|f(t)| \cdot\left|\mu\left(D_{l}\right)\right|+ \\
& +\frac{\varepsilon}{4 M} \cdot M_{1}<\bar{\mu}\left(C_{n_{0}}\right) \cdot M_{1}+\frac{\varepsilon}{4 M} \cdot M_{1} \\
& <2 \cdot \frac{\varepsilon}{4 M} \cdot M_{1}=\frac{\varepsilon}{2} .
\end{aligned}
$$

Consider another partition $P^{\prime}=\left\{E_{s}\right\}_{s=\overline{1, q}} \in \mathcal{P}_{C_{n_{0}}}$, with $P^{\prime} \geq P_{\varepsilon}$ and $r_{s} \in E_{s}, s=\overline{1, q}$, arbitrarily.
In a similar way we get $h\left(\sum_{s=1}^{q} f\left(r_{s}\right) \mu\left(E_{s}\right), f(c) \mu\left(C_{n_{0}}\right)\right)<\frac{\varepsilon}{2}$, whence,
$h\left(\sum_{l=1}^{p} f\left(t_{l}\right) \mu\left(D_{l}\right), \sum_{s=1}^{q} f\left(r_{s}\right) \mu\left(E_{s}\right)\right)<\varepsilon$. Then f is μ-integrable on $C_{n_{0}}$.

Consequently, according to Theorem 31-II, in order to prove that f is μ-integrable on T, it is sufficient to establish the μ-integrability of f on $T \backslash C_{n_{0}}$.

Since for every $n \in \mathbb{N} f_{n}$ is μ-integrable on T, then $f_{n_{0}}$ is μ-integrable on $T \backslash C_{n_{0}}$. Consequently, there is a partition $P_{\varepsilon}^{n_{0}}=\left\{A_{i}\right\}_{i=\overline{1, m_{n_{0}}}} \in \mathcal{P}_{T \backslash C_{n_{0}}}$ so that, for every other partition $P \in \mathcal{P}_{T \backslash C_{n_{0}}}$, with $P \geq P_{\varepsilon}^{n_{0}}$, we have $h\left(\sigma(P), \sigma\left(P_{\varepsilon}^{n_{0}}\right)\right)<\frac{\varepsilon}{3}$.

Let $P=\left\{D_{j}\right\}_{j=\overline{1, l}} \in \mathcal{P}_{T \backslash C_{n_{0}}}$, with $P \geq P_{\varepsilon}^{n_{0}}$ be arbitrarily, but fixed. For every $t_{j} \in D_{j}, j=\overline{1, l}$ and every $c_{i} \in A_{i}, i=\overline{1, m_{n_{0}}}$, we have:

$$
\begin{aligned}
& h\left(\sum_{j=1}^{l} f\left(t_{j}\right) \mu\left(D_{j}\right), \sum_{i=1}^{m_{n_{0}}} f\left(c_{i}\right) \mu\left(A_{i}\right)\right) \\
& \leq h\left(\sum_{j=1}^{l} f\left(t_{j}\right) \mu\left(D_{j}\right), \sum_{j=1}^{l} f_{n_{0}}\left(t_{j}\right) \mu\left(D_{j}\right)\right)+ \\
& +h\left(\sum_{j=1}^{l} f_{n_{0}}\left(t_{j}\right) \mu\left(D_{j}\right), \sum_{i=1}^{m_{n_{0}}} f_{n_{0}}\left(c_{i}\right) \mu\left(A_{i}\right)\right)+ \\
& +h\left(\sum_{i=1}^{m_{n_{0}}} f_{n_{0}}\left(c_{i}\right) \mu\left(A_{i}\right), \sum_{i=1}^{m_{n_{0}}} f\left(c_{i}\right) \mu\left(A_{i}\right)\right) \leq \\
& \leq \bar{\mu}\left(T \backslash C_{n_{0}}\right) \cdot \sup _{t \in c B_{n_{0}}}\left|f(t)-f_{n_{0}}(t)\right| \\
& +\frac{\varepsilon}{3}+\bar{\mu}\left(T \backslash C_{n_{0}}\right) \cdot \sup _{t \in c B_{n_{0}}}\left|f(t)-f_{n_{0}}(t)\right|< \\
& <M^{\prime} \cdot \frac{\varepsilon}{6 M^{\prime}}+\frac{\varepsilon}{3}+M^{\prime} \cdot \frac{\varepsilon}{6 M^{\prime}}=\varepsilon .
\end{aligned}
$$

A similar inequality for every other partition $P^{\prime} \in$ $\mathcal{P}_{T \backslash C_{n_{0}}}$, with $P^{\prime} \geq P_{\varepsilon}^{n_{0}}$, may analogously be obtained. Then, by the triangular inequality, f is μ integrable on $T \backslash C_{n_{0}}$ and, according to Theorem 4.5II, f is μ-integrable on T.

Now, we prove that $\lim _{n \rightarrow \infty} \int_{T}\left(f_{n}-f\right) d \mu=\{0\}$ with respect to h. According to Theorem 31-III, there exist $\int_{A} f d \mu$ and $\int_{A} f_{n} d \mu$, for every $n \in \mathbb{N}$ and every $A \in \mathcal{A}$.

We shall use the same $B_{n}\left(\frac{\varepsilon}{6 M^{\prime}}\right)$, with $n \geq n_{0}$, as before. By the definition of $\widetilde{\mu}$, we get that for every $n \geq n_{0}$, there exists $C_{n} \in \mathcal{A}$ so that $B_{n}\left(\frac{\varepsilon}{6 M^{\prime}}\right) \subseteq C_{n}$ and $\widetilde{\mu}\left(C_{n}\right)=\bar{\mu}\left(C_{n}\right)<\frac{\varepsilon}{4 M}$.

Then, for every $n \geq n_{0}$, we have:

$$
\begin{aligned}
& \left|\int_{A}\left(f_{n}-f\right) d \mu\right|=\mid \int_{A \backslash C_{n}}\left(f_{n}-f\right) d \mu \\
& +\int_{A \cap C_{n}}\left(f_{n}-f\right) d \mu \mid \leq \\
& \leq \sup _{t \in A \backslash C_{n}}\left|f_{n}(t)-f(t)\right| \cdot \bar{\mu}\left(A \backslash C_{n}\right) \\
& +\sup _{t \in A \cap C_{n}}\left|f_{n}(t)-f(t)\right| \cdot \bar{\mu}\left(A \cap C_{n}\right)< \\
& <\frac{\varepsilon}{6 M^{\prime}} \cdot M^{\prime} \\
& +2 M \cdot \bar{\mu}\left(C_{n}\right)<\frac{\varepsilon}{2}+2 M \cdot \frac{\varepsilon}{4 M}=\varepsilon
\end{aligned}
$$

so $\lim _{n \rightarrow \infty} \int_{A}\left(f_{n}-f\right) d \mu=\{0\}$ (with respect to h), for every $A \in \mathcal{A}$.

Theorem 44 (Lebesgue type Theorem) Let $\mu: \mathcal{A} \rightarrow$ $\mathcal{P}_{k c}(X)$ be a set multifunction of finite variation, with $\mu(\emptyset)=\{0\}$ and $f_{n}: T \rightarrow \mathbb{R}$, for every $n \in \mathbb{N}$. Suppose $\left(f_{n}\right)_{n}$ is an uniformly bounded sequence of μ-integrable functions such that $\left(f_{n}\right)_{n}$ is convergent in submeasure to a bounded function $f: T \rightarrow \mathbb{R}$. Then, f is μ-integrable on every $A \in \mathcal{A}$ and

$$
\lim _{n \rightarrow \infty} \int_{A} f_{n} d \mu=\int_{A} f d \mu(\text { with respect to } h)
$$

Proof. By the proof of Theorem 43, it results that f is μ-integrable on every $A \in \mathcal{A}$. Using the same sets as before, we have for every $n \geq n_{0}$ and every $A \in \mathcal{A}$:

$$
\begin{aligned}
& h\left(\int_{A} f_{n} d \mu, \int_{A} f d \mu\right) \\
& =h\left(\int_{A \backslash C_{n}} f_{n} d \mu+\int_{A \cap C_{n}} f_{n} d \mu, \int_{A \backslash C_{n}} f d \mu\right. \\
& \left.+\int_{A \cap C_{n}} f d \mu\right) \leq h\left(\int_{A \backslash C_{n}} f_{n} d \mu, \int_{A \backslash C_{n}} f d \mu\right) \\
& +h\left(\int_{A \cap C_{n}} f_{n} d \mu, \int_{A \cap C_{n}} f d \mu\right) \leq \\
& \leq \sup _{t \in A \backslash C_{n}}\left|f_{n}(t)-f(t)\right| \cdot \bar{\mu}\left(A \backslash C_{n}\right) \\
& +\sup _{t \in A \cap C_{n}}\left|f_{n}(t)-f(t)\right| \cdot \bar{\mu}\left(A \cap C_{n}\right)<\frac{\varepsilon}{6 M^{\prime}} \cdot M^{\prime} \\
& +2 M \cdot \bar{\mu}\left(C_{n}\right)<\frac{\varepsilon}{2}+2 M \cdot \frac{\varepsilon}{4 M}=\varepsilon,
\end{aligned}
$$

and the conclusion follows.

Theorem 45 (Fatou Lemma) Suppose \mathcal{A} is a σ algebra, $\mu: \mathcal{A} \rightarrow \mathbb{R}_{+}$is a submeasure of finite variation so that $\tilde{\mu}$ is o-continuous and $\left(f_{n}\right)_{n \in \mathbb{N}}$ is a
sequence of uniformly bounded, $\widetilde{\mu}$-totally-measurable functions $f_{n}: T \rightarrow \mathbb{R}$. Then

$$
\int_{T} \liminf _{n} f_{n} d \mu \leq \liminf _{n} \int_{T} f_{n} d \mu
$$

Proof. For every $n \in \mathbb{N}$, consider g_{n} defined for every $t \in T$ by $g_{n}(t)=\inf _{k \geq n} f_{k}(t)$. Let also be $f: T \rightarrow \mathbb{R}$, $f(t)=\lim _{n \rightarrow \infty} g_{n}(t)$, for every $t \in T$. We observe that $g_{n} \xrightarrow{a e} f$ and $g_{n} \leq f_{n}$, for every $n \in \mathbb{N}$.

According to Theorem $24,\left(g_{n}\right)_{n}$ is also a sequence of uniformly bounded, $\widetilde{\mu}$-totally-measurable functions, so, by Corollary 25, f is $\widetilde{\mu}$-totallymeasurable on T.

By [17], f_{n} and f are μ-integrable on T, for every $n \in \mathbb{N}$.

Since $g_{n} \xrightarrow{a e} f$ and $\widetilde{\mu}$ is an o-continuous submeasure on $\mathcal{P}(T)$, then, according to Li [23], $g_{n} \xrightarrow{\widetilde{\mu}} f$, so, by [13],

$$
\int_{T} \liminf _{n} f_{n} d \mu=\int_{T} f d \mu=\lim _{n \rightarrow \infty} \int_{T} g_{n} d \mu .
$$

Consequently,

$$
\begin{aligned}
& \int_{T} \liminf _{n} f_{n} d \mu=\liminf _{n} \int_{T} g_{n} d \mu \\
& \leq \liminf _{n} \int_{T} f_{n} d \mu
\end{aligned}
$$

This completes the proof.

References:

[1] G. Apreutesei, N.E. Mastorakis, A. Croitoru, A. Gavriluţ, On the translation of an almost linear topology, WSEAS Transactions on Mathematics, Vol.8, (2009), pp. 479-488.
[2] U. Bandyopadhyay, On vector measures with the Darboux property, Quart. J. Oxford Math., (1974), pp. 57-61.
[3] I. Chiţescu, - Finitely purely atomic measures and L_{p}-spaces, An. Univ. Bucureşti Şt. Natur. 24 (1975), 23-29.
[4] I. Chiţescu, Finitely purely atomic measures: coincidence and rigidity properties, Rend. Circ. Mat. Palermo, vol. 50, (2001), No. 3, pp. 455476.
[5] A. Croitoru, A. Gavriluţ, N. E. Mastorakis, Convergence theorems for totally-measurable functions, WSEAS Trans. Math., Vol.8, (2009), pp. 614-623.
[6] A. Croitoru, A. Gavriluţ,N.E. Mastorakis, G. Gavriluţ, On different types of non-additive set multifunctions, WSEAS Trans. Math., Vol.8, (2009), pp. 246-257.
[7] L. Drewnowski, Topological rings of sets, continuous set functions, Integration, I, II, III, Bull. Acad. Polon. Sci. Sér. Math. Astron. Phys., Vol. 20, (1972), pp. 269-276, pp. 277-286.
[8] L. Drewnowski,T. Luczak, On nonatomic submeasures on \mathbb{N}, Arch. Math., vol. 91, (2008), pp. 76-85.
[9] L. Drewnowski, T. Luczak, On nonatomic submeasures on \mathbb{N} II, J. Math. Anal. Appl., vol.347, (2008), no 2, pp. 442-449.
[10] N. J. Fernández, - Are diffused, Radon measures nonatomic?, Papers in honor Pablo Bobillo Guerrero (Spanish), 261-265, Univ. Granada, 1992.
[11] R. J. Gardner, W. F. Pfeffer, Are diffused, regular, Radon measures σ-finite?, J. London Math. Soc., vol.20, (1979), pp. 485-494.
[12] A. Gavriluţ, A Gould type integral with respect to a multisubmeasure, Math. Slovaca, vol.58, (2008), No. 1, pp. 1-20.
[13] A. Gavriluţ, On some properties of the Gould type integral with respect to a multisubmeasure, An. Şt. Univ. Iaşi, vol. 52, (2006), no 1, pp. 177194.
[14] A. Gavriluţ, The general Gould type integral with respect to a multisubmeasure, Math. Slovaca, vol.60, (2010), No. 3, pp. 289-318.
[15] A. Gavriluţ, Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions, Fuzzy Sets and Systems, vol.160, (2009), pp. 1308-1317.
[16] A. Gavriluţ, A. Croitoru, Non-atomicity for fuzzy and non-fuzzy multivalued set functions, Fuzzy Sets and Systems, vol.160, (2009), pp. 2106-2116.
[17] A. Gavriluţ, A. Petcu, A Gould type integral with respect to a submeasure, An. Şt. Univ. Iassi, Tomul LIII, 2007, f. 2, pp. 351-368.
[18] A. Gavriluţ, A. Croitoru, N. E. Mastorakis, G. Gavriluţ, Measurability and Gould integrability in finitely purely atomic multisubmeasure spaces, WSEAS Trans. Math., Vol.8, (2009), pp. 435-444.
[19] A. Gavriluţ, A. Croitoru, N. E. Mastorakis, Diffusion and semi-convexity of fuzzy set multifunctions, WSEAS Trans. Math., vol.9, (2010), pp. 561-570.
[20] G. G. Gould, On integration of vector-valued measures, Proc. London Math. Soc., vol.15, (1965), pp. 193-225.
[21] P. Holický, C. E. Weil, L. Zajiček, A note on the Darboux property of Fréchet derivatives, Real Anal. Exchange, vol.32, (2007), pp. 489-494.
[22] S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis, vol. I, Kluwer Acad. Publ., Dordrecht, 1997.
[23] J. Li, Order continuous of monotone set function and convergence of measureable functions sequence, Applied Mathematics and Computation, vol.135, (2003), pp. 211-218.
[24] J. Li, A note on the null-additivity of the fuzzy measure, Fuzzy Sets and Systems, vol.125, (2002), pp. 269-271.
[25] N.E. Mastorakis, A. Gavriluţ, A. Croitoru, G. Apreutesei, On Darboux property for fuzzy multimeasures, Proceedings of the 10th WSEAS International Conference on Fuzzy Systems [FS'09], Prague, Czech Republic, March 23-25, 2009, pp. 54-58.
[26] E. Pap, - Null-additive Set Functions, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995.
[27] A. Petruşel, G. Moţ, - Multivalued Analysis and Mathematical Economics, House of the Book of Science, Cluj Napoca, 2004.
[28] A. Precupanu, A. Croitoru, A Gould type integral with respect to a multimeasure, I, An. Şt. Univ. Iaşi, vol.48, (2002), pp. 165-200.
[29] A. Precupanu, A. Gavriluţ, A. Croitoru, A fuzzy Gould type integral, Fuzzy Sets and Systems, vol.161, (2010), pp. 661-680.
[30] A. Precupanu, A. Gavriluţ, A. Croitoru, On a generalized Gould type set valued integral, submitted for publication.

